Answer :

To simplify the expression [tex]\(\sqrt{36 x^6 y^4}\)[/tex], we can follow these steps:

1. Simplify the constant inside the square root:
[tex]\[ \sqrt{36} = 6 \][/tex]

2. Simplify the variable terms inside the square root:

- For [tex]\(x^6\)[/tex]:
[tex]\[ \sqrt{x^6} = x^3 \][/tex]
This is because [tex]\(\sqrt{(x^3)^2} = x^3\)[/tex].

- For [tex]\(y^4\)[/tex]:
[tex]\[ \sqrt{y^4} = y^2 \][/tex]
This is because [tex]\(\sqrt{(y^2)^2} = y^2\)[/tex].

3. Combine all simplified parts:
[tex]\[ \sqrt{36 x^6 y^4} = \sqrt{36} \cdot \sqrt{x^6} \cdot \sqrt{y^4} = 6 \cdot x^3 \cdot y^2 \][/tex]

Therefore, the simplified form of the expression [tex]\(\sqrt{36 x^6 y^4}\)[/tex] is:
[tex]\[ 6x^3y^2 \][/tex]