Answer :
Sure! Let's evaluate each part of the question step-by-step.
### Part 1: Evaluate
[tex]\[ \frac{3}{4^3} \][/tex]
First, let's calculate the value of [tex]\( 4^3 \)[/tex].
[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]
Now, we can substitute this value back into the expression:
[tex]\[ \frac{3}{64} \][/tex]
The result is:
[tex]\[ \frac{3}{64} \approx 0.046875 \][/tex]
### Part 2: Evaluate
[tex]\[ \left(-\frac{1}{5}\right)^2 \][/tex]
First, we need to evaluate the fraction [tex]\(\frac{-1}{5}\)[/tex]:
[tex]\[ -\frac{1}{5} \][/tex]
Next, we need to square this fraction:
[tex]\[ \left(-\frac{1}{5}\right)^2 = \left(\frac{-1 \times -1}{5 \times 5}\right) = \frac{1}{25} \][/tex]
Thus:
[tex]\[ \left(-\frac{1}{5}\right)^2 = \frac{1}{25} \approx 0.04000000000000001 \][/tex]
So, the solutions to each part are:
[tex]\[ \frac{3}{4^3} \approx 0.046875 \][/tex]
and
[tex]\[ \left(-\frac{1}{5}\right)^2 \approx 0.04000000000000001 \][/tex]
### Part 1: Evaluate
[tex]\[ \frac{3}{4^3} \][/tex]
First, let's calculate the value of [tex]\( 4^3 \)[/tex].
[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]
Now, we can substitute this value back into the expression:
[tex]\[ \frac{3}{64} \][/tex]
The result is:
[tex]\[ \frac{3}{64} \approx 0.046875 \][/tex]
### Part 2: Evaluate
[tex]\[ \left(-\frac{1}{5}\right)^2 \][/tex]
First, we need to evaluate the fraction [tex]\(\frac{-1}{5}\)[/tex]:
[tex]\[ -\frac{1}{5} \][/tex]
Next, we need to square this fraction:
[tex]\[ \left(-\frac{1}{5}\right)^2 = \left(\frac{-1 \times -1}{5 \times 5}\right) = \frac{1}{25} \][/tex]
Thus:
[tex]\[ \left(-\frac{1}{5}\right)^2 = \frac{1}{25} \approx 0.04000000000000001 \][/tex]
So, the solutions to each part are:
[tex]\[ \frac{3}{4^3} \approx 0.046875 \][/tex]
and
[tex]\[ \left(-\frac{1}{5}\right)^2 \approx 0.04000000000000001 \][/tex]