Answer :

Sure! Let's evaluate each part of the question step-by-step.

### Part 1: Evaluate
[tex]\[ \frac{3}{4^3} \][/tex]

First, let's calculate the value of [tex]\( 4^3 \)[/tex].

[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]

Now, we can substitute this value back into the expression:

[tex]\[ \frac{3}{64} \][/tex]

The result is:

[tex]\[ \frac{3}{64} \approx 0.046875 \][/tex]

### Part 2: Evaluate
[tex]\[ \left(-\frac{1}{5}\right)^2 \][/tex]

First, we need to evaluate the fraction [tex]\(\frac{-1}{5}\)[/tex]:

[tex]\[ -\frac{1}{5} \][/tex]

Next, we need to square this fraction:

[tex]\[ \left(-\frac{1}{5}\right)^2 = \left(\frac{-1 \times -1}{5 \times 5}\right) = \frac{1}{25} \][/tex]

Thus:

[tex]\[ \left(-\frac{1}{5}\right)^2 = \frac{1}{25} \approx 0.04000000000000001 \][/tex]

So, the solutions to each part are:

[tex]\[ \frac{3}{4^3} \approx 0.046875 \][/tex]

and

[tex]\[ \left(-\frac{1}{5}\right)^2 \approx 0.04000000000000001 \][/tex]