Use division to find the quotient and remainder: [tex]\left(3x^3 - 4x^2 + 3x - 2\right) \div (x - 2)[/tex].

Answer Attempt 1 out of 5:
A. [tex]Q(x) = 3x^2 - 10x + 23 ; R(x) = -44[/tex]
B. [tex]Q(x) = 3x^2 - 10x + 17 ; R(x) = -32[/tex]
C. [tex]Q(x) = 2x^2 + 3 ; R(x) = 8[/tex]
D. [tex]Q(x) = 3x^2 + 2x + 7 ; R(x) = 12[/tex]



Answer :

To solve the polynomial division [tex]\(\left(3x^3 - 4x^2 + 3x - 2\right) \div (x - 2)\)[/tex], we proceed as follows:

1. Set up the Polynomial Division:
[tex]\[ \frac{3x^3 - 4x^2 + 3x - 2}{x - 2} \][/tex]

2. Divide the Leading Terms:
The first term in the quotient is obtained by dividing the leading term of the dividend [tex]\(3x^3\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{3x^3}{x} = 3x^2 \][/tex]
So [tex]\(\mathbf{Q(x) = 3x^2}\)[/tex].

3. Multiply and Subtract:
Multiply [tex]\(3x^2\)[/tex] by [tex]\(x - 2\)[/tex] and subtract the result from the original polynomial:
[tex]\[ (3x^2)(x - 2) = 3x^3 - 6x^2 \][/tex]
[tex]\[ 3x^3 - 4x^2 + 3x - 2 - (3x^3 - 6x^2) = 2x^2 + 3x - 2 \][/tex]

4. Repeat the Process:
Next, divide [tex]\(2x^2\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ \frac{2x^2}{x} = 2x \][/tex]
[tex]\(\mathbf{Q(x) = 3x^2 - 2x}\)[/tex].

Multiply [tex]\(2x\)[/tex] by [tex]\(x - 2\)[/tex] and subtract the result:
[tex]\[ (2x)(x - 2) = 2x^2 - 4x \][/tex]
[tex]\[ 2x^2 + 3x - 2 - (2x^2 - 4x) = 7x - 2 \][/tex]

5. Continue the Process:
Divide [tex]\(7x\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ \frac{7x}{x} = 7 \][/tex]
So [tex]\(\mathbf{Q(x) = 3x^2 - 2x + 7}\)[/tex].

Multiply [tex]\(7\)[/tex] by [tex]\(x - 2\)[/tex] and subtract:
[tex]\[ 7(x - 2) = 7x - 14 \][/tex]
[tex]\[ 7x - 2 - (7x - 14) = 12 \][/tex]

6. Remainder:
The remainder which cannot be divided by [tex]\(x - 2\)[/tex] is [tex]\(12\)[/tex].

Hence, the final quotient and remainder are:
[tex]\[ Q(x) = 3x^2 - 2x + 7 \][/tex]
[tex]\[ R(x) = 12 \][/tex]

Among the provided options, the correct one matches:
[tex]\[ Q(x) = 3x^2 + 2x + 7 ; R(x) = 12 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{4} \][/tex]