To find the resistance [tex]\( R \)[/tex] when given the volts [tex]\( V \)[/tex] and power [tex]\( P \)[/tex], we use the formula for voltage:
[tex]\[ V = \sqrt{P \cdot R} \][/tex]
We need to rearrange this formula to solve for [tex]\( R \)[/tex]. By squaring both sides of the equation, we get:
[tex]\[ V^2 = P \cdot R \][/tex]
Next, we isolate [tex]\( R \)[/tex] by dividing both sides of the equation by [tex]\( P \)[/tex]:
[tex]\[ R = \frac{V^2}{P} \][/tex]
Now, we can substitute the given values into this equation. We are given:
- [tex]\( V = 130 \)[/tex] volts
- [tex]\( P = 1200 \)[/tex] watts
Substituting these values in, we calculate:
[tex]\[ R = \frac{130^2}{1200} \][/tex]
First, calculate [tex]\( 130^2 \)[/tex]:
[tex]\[ 130^2 = 16900 \][/tex]
Now, divide this by 1200:
[tex]\[ R = \frac{16900}{1200} \approx 14.0833 \][/tex]
Next, we round this value to the nearest whole number. Hence, the resistance [tex]\( R \)[/tex] to the nearest ohm is:
[tex]\[ R \approx 14 \][/tex]
Therefore, the resistance is 14 ohms.