Find the domain of [tex]$f(x) = \frac{x-3}{7x}$[/tex].

A. All real numbers except 3
B. All real numbers except -3
C. All real numbers except 7
D. All real numbers except 0



Answer :

To determine the domain of the function [tex]\( f(x) = \frac{x-3}{7x} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] for which the function is undefined.

A function is undefined whenever the denominator is zero because division by zero is not allowed. In this case, the denominator of the function is [tex]\( 7x \)[/tex].

Let's solve for [tex]\( x \)[/tex] when the denominator equals zero:

[tex]\[ 7x = 0 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ x = 0 \][/tex]

So, the function [tex]\( f(x) = \frac{x-3}{7x} \)[/tex] is undefined when [tex]\( x = 0 \)[/tex].

Therefore, the domain of the function is all real numbers except [tex]\( 0 \)[/tex].

The correct answer is:

All real numbers except 0