### Decimal Fraction Test

Convert to decimal:
A. [tex]\frac{3}{4}[/tex]
B. [tex]\frac{1}{8}[/tex]
C. [tex]\frac{5}{16}[/tex]

Convert to fraction:
A. [tex]2.250[/tex]
B. [tex]4.375[/tex]
C. [tex]3.625[/tex]



Answer :

Sure, let's break down the solution step by step.

### Part 1: Converting to Decimal

A. [tex]\( \frac{3}{4} \)[/tex]

The fraction [tex]\( \frac{3}{4} \)[/tex] converts to a decimal as follows:

[tex]\[ \frac{3}{4} = 0.75 \][/tex]

B. [tex]\( \frac{1}{8} \)[/tex]

The fraction [tex]\( \frac{1}{8} \)[/tex] converts to a decimal as follows:

[tex]\[ \frac{1}{8} = 0.125 \][/tex]

C. [tex]\( \frac{5}{16} \)[/tex]

The fraction [tex]\( \frac{5}{16} \)[/tex] converts to a decimal as follows:

[tex]\[ \frac{5}{16} = 0.3125 \][/tex]

So, the results for part 1 are:

- [tex]\( A \)[/tex] = 0.75
- [tex]\( B \)[/tex] = 0.125
- [tex]\( C \)[/tex] = 0.3125

### Part 2: Converting to Fraction

A. 2.250

To convert the decimal 2.250 to a fraction, we consider the number of decimal places:

1. Write 2.250 as [tex]\( \frac{2250}{1000} \)[/tex].
2. Simplify the fraction:

[tex]\[ \frac{2250}{1000} = \frac{225}{100} = \frac{45}{20} = \frac{9}{4} \][/tex]

Thus, 2.250 converts to the fraction [tex]\( \frac{9}{4} \)[/tex].

B. 4.375

To convert the decimal 4.375 to a fraction, we consider the number of decimal places:

1. Write 4.375 as [tex]\( \frac{4375}{1000} \)[/tex].
2. Simplify the fraction:

[tex]\[ \frac{4375}{1000} = \frac{875}{200} = \frac{175}{40} = \frac{35}{8} \][/tex]

Thus, 4.375 converts to the fraction [tex]\( \frac{35}{8} \)[/tex].

C. 3.625

To convert the decimal 3.625 to a fraction, we consider the number of decimal places:

1. Write 3.625 as [tex]\( \frac{3625}{1000} \)[/tex].
2. Simplify the fraction:

[tex]\[ \frac{3625}{1000} = \frac{725}{200} = \frac{145}{40} = \frac{29}{8} \][/tex]

Thus, 3.625 converts to the fraction [tex]\( \frac{29}{8} \)[/tex].

Summarizing the results for part 2:

- [tex]\( A \)[/tex] = [tex]\( \frac{9}{4} \)[/tex]
- [tex]\( B \)[/tex] = [tex]\( \frac{35}{8} \)[/tex]
- [tex]\( C \)[/tex] = [tex]\( \frac{29}{8} \)[/tex]

### Final Answer

So, combining the results of both parts, we get:

1. Convert to decimal:
- [tex]\( A \)[/tex]: 0.75
- [tex]\( B \)[/tex]: 0.125
- [tex]\( C \)[/tex]: 0.3125

2. Convert to fraction:
- [tex]\( A \)[/tex]: [tex]\( \frac{9}{4} \)[/tex]
- [tex]\( B \)[/tex]: [tex]\( \frac{35}{8} \)[/tex]
- [tex]\( C \)[/tex]: [tex]\( \frac{29}{8} \)[/tex]