Answer :
Sure, let's break down the solution step by step.
### Part 1: Converting to Decimal
A. [tex]\( \frac{3}{4} \)[/tex]
The fraction [tex]\( \frac{3}{4} \)[/tex] converts to a decimal as follows:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
B. [tex]\( \frac{1}{8} \)[/tex]
The fraction [tex]\( \frac{1}{8} \)[/tex] converts to a decimal as follows:
[tex]\[ \frac{1}{8} = 0.125 \][/tex]
C. [tex]\( \frac{5}{16} \)[/tex]
The fraction [tex]\( \frac{5}{16} \)[/tex] converts to a decimal as follows:
[tex]\[ \frac{5}{16} = 0.3125 \][/tex]
So, the results for part 1 are:
- [tex]\( A \)[/tex] = 0.75
- [tex]\( B \)[/tex] = 0.125
- [tex]\( C \)[/tex] = 0.3125
### Part 2: Converting to Fraction
A. 2.250
To convert the decimal 2.250 to a fraction, we consider the number of decimal places:
1. Write 2.250 as [tex]\( \frac{2250}{1000} \)[/tex].
2. Simplify the fraction:
[tex]\[ \frac{2250}{1000} = \frac{225}{100} = \frac{45}{20} = \frac{9}{4} \][/tex]
Thus, 2.250 converts to the fraction [tex]\( \frac{9}{4} \)[/tex].
B. 4.375
To convert the decimal 4.375 to a fraction, we consider the number of decimal places:
1. Write 4.375 as [tex]\( \frac{4375}{1000} \)[/tex].
2. Simplify the fraction:
[tex]\[ \frac{4375}{1000} = \frac{875}{200} = \frac{175}{40} = \frac{35}{8} \][/tex]
Thus, 4.375 converts to the fraction [tex]\( \frac{35}{8} \)[/tex].
C. 3.625
To convert the decimal 3.625 to a fraction, we consider the number of decimal places:
1. Write 3.625 as [tex]\( \frac{3625}{1000} \)[/tex].
2. Simplify the fraction:
[tex]\[ \frac{3625}{1000} = \frac{725}{200} = \frac{145}{40} = \frac{29}{8} \][/tex]
Thus, 3.625 converts to the fraction [tex]\( \frac{29}{8} \)[/tex].
Summarizing the results for part 2:
- [tex]\( A \)[/tex] = [tex]\( \frac{9}{4} \)[/tex]
- [tex]\( B \)[/tex] = [tex]\( \frac{35}{8} \)[/tex]
- [tex]\( C \)[/tex] = [tex]\( \frac{29}{8} \)[/tex]
### Final Answer
So, combining the results of both parts, we get:
1. Convert to decimal:
- [tex]\( A \)[/tex]: 0.75
- [tex]\( B \)[/tex]: 0.125
- [tex]\( C \)[/tex]: 0.3125
2. Convert to fraction:
- [tex]\( A \)[/tex]: [tex]\( \frac{9}{4} \)[/tex]
- [tex]\( B \)[/tex]: [tex]\( \frac{35}{8} \)[/tex]
- [tex]\( C \)[/tex]: [tex]\( \frac{29}{8} \)[/tex]
### Part 1: Converting to Decimal
A. [tex]\( \frac{3}{4} \)[/tex]
The fraction [tex]\( \frac{3}{4} \)[/tex] converts to a decimal as follows:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
B. [tex]\( \frac{1}{8} \)[/tex]
The fraction [tex]\( \frac{1}{8} \)[/tex] converts to a decimal as follows:
[tex]\[ \frac{1}{8} = 0.125 \][/tex]
C. [tex]\( \frac{5}{16} \)[/tex]
The fraction [tex]\( \frac{5}{16} \)[/tex] converts to a decimal as follows:
[tex]\[ \frac{5}{16} = 0.3125 \][/tex]
So, the results for part 1 are:
- [tex]\( A \)[/tex] = 0.75
- [tex]\( B \)[/tex] = 0.125
- [tex]\( C \)[/tex] = 0.3125
### Part 2: Converting to Fraction
A. 2.250
To convert the decimal 2.250 to a fraction, we consider the number of decimal places:
1. Write 2.250 as [tex]\( \frac{2250}{1000} \)[/tex].
2. Simplify the fraction:
[tex]\[ \frac{2250}{1000} = \frac{225}{100} = \frac{45}{20} = \frac{9}{4} \][/tex]
Thus, 2.250 converts to the fraction [tex]\( \frac{9}{4} \)[/tex].
B. 4.375
To convert the decimal 4.375 to a fraction, we consider the number of decimal places:
1. Write 4.375 as [tex]\( \frac{4375}{1000} \)[/tex].
2. Simplify the fraction:
[tex]\[ \frac{4375}{1000} = \frac{875}{200} = \frac{175}{40} = \frac{35}{8} \][/tex]
Thus, 4.375 converts to the fraction [tex]\( \frac{35}{8} \)[/tex].
C. 3.625
To convert the decimal 3.625 to a fraction, we consider the number of decimal places:
1. Write 3.625 as [tex]\( \frac{3625}{1000} \)[/tex].
2. Simplify the fraction:
[tex]\[ \frac{3625}{1000} = \frac{725}{200} = \frac{145}{40} = \frac{29}{8} \][/tex]
Thus, 3.625 converts to the fraction [tex]\( \frac{29}{8} \)[/tex].
Summarizing the results for part 2:
- [tex]\( A \)[/tex] = [tex]\( \frac{9}{4} \)[/tex]
- [tex]\( B \)[/tex] = [tex]\( \frac{35}{8} \)[/tex]
- [tex]\( C \)[/tex] = [tex]\( \frac{29}{8} \)[/tex]
### Final Answer
So, combining the results of both parts, we get:
1. Convert to decimal:
- [tex]\( A \)[/tex]: 0.75
- [tex]\( B \)[/tex]: 0.125
- [tex]\( C \)[/tex]: 0.3125
2. Convert to fraction:
- [tex]\( A \)[/tex]: [tex]\( \frac{9}{4} \)[/tex]
- [tex]\( B \)[/tex]: [tex]\( \frac{35}{8} \)[/tex]
- [tex]\( C \)[/tex]: [tex]\( \frac{29}{8} \)[/tex]