Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

Triangle [tex]$ABC$[/tex] is defined by the points [tex]$A(3,8)$[/tex], [tex][tex]$B(7,5)$[/tex][/tex], and [tex]$C(2,3)$[/tex].

Create an equation for a line passing through point [tex]$A$[/tex] and perpendicular to [tex]$\overline{BC}$[/tex].

[tex]y = \square x + \square[/tex]



Answer :

To find the equation of the line passing through point [tex]\( A(3,8) \)[/tex] and perpendicular to line segment [tex]\( \overline{BC} \)[/tex]:

1. Identify the coordinates of points [tex]\( B \)[/tex] and [tex]\( C \)[/tex]: [tex]\( B(7,5) \)[/tex] and [tex]\( C(2,3) \)[/tex].

2. Calculate the slope of [tex]\( \overline{BC} \)[/tex]:

[tex]\[ \text{slope}_{BC} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 5}{2 - 7} = \frac{-2}{-5} = \frac{2}{5} \][/tex]

3. The slope of the line perpendicular to [tex]\( \overline{BC} \)[/tex] is the negative reciprocal of the slope of [tex]\( \overline{BC} \)[/tex]:

[tex]\[ \text{slope}_{\text{perpendicular}} = -\frac{1}{\text{slope}_{BC}} = -\frac{1}{\frac{2}{5}} = -\frac{5}{2} = -2.5 \][/tex]

4. Use the point-slope form of the equation of the line that passes through point [tex]\( A(3, 8) \)[/tex]. The point-slope form equation is:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

where [tex]\((x_1, y_1) = (3, 8)\)[/tex] and [tex]\( m = -2.5 \)[/tex]:

[tex]\[ y - 8 = -2.5(x - 3) \][/tex]

5. Simplify to the slope-intercept form [tex]\( y = mx + c \)[/tex]:

[tex]\[ y - 8 = -2.5x + 7.5 \][/tex]

[tex]\[ y = -2.5x + 7.5 + 8 \][/tex]

[tex]\[ y = -2.5x + 15.5 \][/tex]

So, the equation of the line passing through point [tex]\( A \)[/tex] and perpendicular to [tex]\( \overline{BC} \)[/tex] is:

[tex]\[ y = -2.5x + 15.5 \][/tex]

Therefore, filling in the boxes:
[tex]\( y = \boxed{-2.5} x + \boxed{15.5} \)[/tex]