Answered

Drag the correct tiles to the table. Not all tiles will be used.

Simplify [tex]\((x-7)(x-5)\)[/tex] using the FOIL method, and identify the resulting expression in standard form.

\begin{tabular}{|c|c|c|c|c|}
\hline
Expression & First & Outer & Inner & Last \\
\hline
[tex]\((x-7)(x-5)\)[/tex] & [tex]\(x^2\)[/tex] & [tex]\(-5x\)[/tex] & [tex]\(-7x\)[/tex] & [tex]\(35\)[/tex] \\
\hline
\end{tabular}

Resulting simplified expression: [tex]\(x^2 - 12x + 35\)[/tex]

Tiles:
\begin{itemize}
\item [tex]\(-7x\)[/tex]
\item [tex]\(-2x\)[/tex]
\item [tex]\(7x\)[/tex]
\item [tex]\(-5x\)[/tex]
\item [tex]\(-x^2\)[/tex]
\item [tex]\(x^2\)[/tex]
\item 35
\item 2
\item 30
\item [tex]\(x^2 - 2x + 5\)[/tex]
\item [tex]\(x^2 - 12x + 35\)[/tex]
\item [tex]\(-x^2 - 12x + 35\)[/tex]
\end{itemize}



Answer :

Sure, let's break this down using the FOIL method, which stands for First, Outer, Inner, and Last terms in the binomial multiplication:

1. First Terms:
Multiply the first terms of each binomial:
[tex]\[ x \cdot x = x^2 \][/tex]

2. Outer Terms:
Multiply the outer terms of each binomial:
[tex]\[ x \cdot (-5) = -5x \][/tex]

3. Inner Terms:
Multiply the inner terms of each binomial:
[tex]\[ -7 \cdot x = -7x \][/tex]

4. Last Terms:
Multiply the last terms of each binomial:
[tex]\[ -7 \cdot (-5) = 35 \][/tex]

Now, combine these results:
[tex]\[ x^2 - 5x - 7x + 35 \][/tex]

Combine like terms:
[tex]\[ x^2 - 12x + 35 \][/tex]

So, the final simplified expression is:

[tex]\[ x^2 - 12x + 35 \][/tex]

Let's fill in the table accordingly:

\begin{tabular}{|c|c|c|c|c|}
\hline
Expression & First & Outer & Inner & Last \\
\hline
[tex]$(x-7)(x-5)$[/tex] & [tex]$x^2$[/tex] & [tex]$-5x$[/tex] & [tex]$-7x$[/tex] & 35 \\
\hline
\end{tabular}

The resulting simplified expression is:

[tex]\[ x^2 - 12x + 35 \][/tex]