A pair of parallel lines is cut by a transversal.

If [tex]$m \angle A = (6x - 3)^{\circ}$[/tex] and [tex]$m \angle B = (9x - 24)^{\circ}$[/tex], what is the value of [tex][tex]$x$[/tex][/tex]?

A. 1.4
B. 7
C. 7.8
D. 13.8



Answer :

Sure, let's solve the problem step-by-step.

When parallel lines are cut by a transversal, the corresponding angles are equal. This means that [tex]\( \angle A \)[/tex] is equal to [tex]\( \angle B \)[/tex]. Given:

[tex]\[ m \angle A = (6x - 3)^\circ \][/tex]
[tex]\[ m \angle B = (9x - 24)^\circ \][/tex]

Since [tex]\( \angle A \)[/tex] and [tex]\( \angle B \)[/tex] are corresponding angles, we set them equal to each other:

[tex]\[ 6x - 3 = 9x - 24 \][/tex]

Let's solve this equation for [tex]\( x \)[/tex]:

1. First, we will isolate the terms involving [tex]\( x \)[/tex] on one side of the equation and the constant terms on the other. This means we will subtract [tex]\( 6x \)[/tex] from both sides:

[tex]\[ 6x - 3 - 6x = 9x - 24 - 6x \][/tex]

Simplifying, we get:

[tex]\[ -3 = 3x - 24 \][/tex]

2. Next, we'll add 24 to both sides to isolate the term with [tex]\( x \)[/tex]:

[tex]\[ -3 + 24 = 3x - 24 + 24 \][/tex]

Simplifying, we get:

[tex]\[ 21 = 3x \][/tex]

3. To solve for [tex]\( x \)[/tex], we divide both sides by 3:

[tex]\[ \frac{21}{3} = \frac{3x}{3} \][/tex]

Simplifying, we find:

[tex]\[ x = 7 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 7 \)[/tex].

To verify, substitute [tex]\( x = 7 \)[/tex] back into both expressions for [tex]\( m \angle A \)[/tex] and [tex]\( m \angle B \)[/tex]:

[tex]\[ m \angle A = 6(7) - 3 = 42 - 3 = 39^\circ \][/tex]
[tex]\[ m \angle B = 9(7) - 24 = 63 - 24 = 39^\circ \][/tex]

Both values are equal, confirming that our solution is correct.

So, the value of [tex]\( x \)[/tex] is:

[tex]\[ \boxed{7} \][/tex]