Solve for [tex]x[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]

---

Question 10 of 10:

If [tex] g(x) = 4x^2 - 16 [/tex] were shifted 7 units to the right and 3 units down, what would the new equation be?

A. [tex] h(x) = 4(x-7)^2 - 19 [/tex]
B. [tex] h(x) = 4(x+7)^2 + 19 [/tex]
C. [tex] h(x) = 4(x+9)^2 - 17 [/tex]
D. [tex] h(x) = 4(x-9)^2 - 17 [/tex]



Answer :

To determine the new equation after shifting the function [tex]\( g(x) = 4x^2 - 16 \)[/tex] 7 units to the right and 3 units down, we follow these steps:

1. Shift 7 units to the right:
- Shifting to the right involves replacing [tex]\( x \)[/tex] with [tex]\( x - a \)[/tex] in the original function, where [tex]\( a \)[/tex] is the number of units shifted.
- Therefore, for a shift of 7 units to the right, we replace [tex]\( x \)[/tex] with [tex]\( x - 7 \)[/tex]:
[tex]\[ g(x - 7) = 4(x - 7)^2 - 16 \][/tex]

2. Expand and simplify the new equation:
- First, compute [tex]\( (x - 7)^2 \)[/tex]:
[tex]\[ (x - 7)^2 = x^2 - 14x + 49 \][/tex]
- Substituting back into the function:
[tex]\[ 4(x - 7)^2 - 16 = 4(x^2 - 14x + 49) - 16 \][/tex]
- Distribute the 4 and simplify:
[tex]\[ = 4x^2 - 56x + 196 - 16 = 4x^2 - 56x + 180 \][/tex]

3. Shift 3 units down:
- Shifting a function down involves subtracting the number of units from the entire equation.
- For a shift of 3 units down, we subtract 3 from [tex]\( 4x^2 - 56x + 180 \)[/tex]:
[tex]\[ 4x^2 - 56x + 180 - 3 = 4x^2 - 56x + 177 \][/tex]

4. Express the new function:
- The new function after both shifts (7 units to the right and 3 units down) is:
[tex]\[ h(x) = 4(x - 7)^2 - 19 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A. \, h(x) = 4(x - 7)^2 - 19} \][/tex]