Answered

Consider the following equation:

[tex]\sqrt{2 x+3} = \frac{\pi}{x+5} + 2[/tex]

Which row in the table is closest to the actual solution?

\begin{tabular}{|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$\sqrt{2 x+3}$[/tex] & [tex]$\frac{\pi}{x+5}+2$[/tex] \\
\hline
0 & 1.7321 & 2 \\
\hline
0.1 & 1.7889 & 2.0196 \\
\hline
0.2 & 1.8439 & 2.0385 \\
\hline
0.3 & 1.8974 & 2.0566 \\
\hline
0.4 & 1.9494 & 2.0741 \\
\hline
0.5 & 2 & 2.0909 \\
\hline
0.6 & 2.0494 & 2.1071 \\
\hline
0.7 & 2.0976 & 2.1228 \\
\hline
0.8 & 2.1448 & 2.1379 \\
\hline
0.9 & 2.1909 & 2.1525 \\
\hline
1.0 & 2.2361 & 2.667 \\
\hline
\end{tabular}



Answer :

Let's consider the equation:

[tex]\[ \sqrt{2 x + 3} = \frac{\pi}{x + 5} + 2 \][/tex]

We need to find the row in the table where the values of [tex]\( \sqrt{2 x + 3} \)[/tex] and [tex]\( \frac{\pi}{x + 5} + 2 \)[/tex] are closest to each other.

Given the table:

[tex]\[ \begin{tabular}{|c|c|c|} \hline $x$ & $\sqrt{2 x+3}$ & $\frac{\pi}{x+5}+2$ \\ \hline 0 & 1.7321 & 2 \\ \hline 0.1 & 1.7889 & 2.0196 \\ \hline 0.2 & 1.8439 & 2.0385 \\ \hline 0.3 & 1.8974 & 2.0566 \\ \hline 0.4 & 1.9494 & 2.0741 \\ \hline 0.5 & 2 & 2.0909 \\ \hline 0.6 & 2.0494 & 2.1071 \\ \hline 0.7 & 2.0976 & 2.1228 \\ \hline 0.8 & 2.1448 & 2.1379 \\ \hline 0.9 & 2.1909 & 2.1525 \\ \hline 1.0 & 2.2361 & 2.5236 \\ \hline \end{tabular} \][/tex]

We need to determine which row has the values of [tex]\( \sqrt{2 x + 3} \)[/tex] and [tex]\( \frac{\pi}{x + 5} + 2 \)[/tex] closest to each other.

After examining the table, we find:

- For [tex]\( x = 1.0 \)[/tex]:
[tex]\[ \sqrt{2 \times 1.0 + 3} = 2.2361 \][/tex]
[tex]\[ \frac{\pi}{1.0 + 5} + 2 \approx 2.5236 \][/tex]

These values are the closest to each other compared to the other rows.

Thus, the row in the table that is closest to the actual solution of the equation is:

[tex]\[ \begin{tabular}{|c|c|c|} \hline 1.0 & 2.2361 & 2.5236 \\ \hline \end{tabular} \][/tex]

This corresponds to the row with [tex]\( x = 1.0 \)[/tex].