Simplify the expression.

[tex]
\frac{v^{-\frac{1}{3}}}{v^{-\frac{5}{7}} v^{-\frac{2}{7}}}
[/tex]

Write your answer using only positive exponents. Assume that all variables are positive real numbers.

Answer: [tex]\square[/tex]



Answer :

To simplify the expression

[tex]\[ \frac{v^{-\frac{1}{3}}}{v^{-\frac{5}{7}} v^{-\frac{2}{7}}} \][/tex]

and write it using only positive exponents, follow these steps:

1. Combine the exponents in the denominator:
[tex]\[ v^{-\frac{5}{7}} v^{-\frac{2}{7}} = v^{-\frac{5}{7} - \frac{2}{7}} \][/tex]
Add the exponents in the denominator:
[tex]\[ -\frac{5}{7} - \frac{2}{7} = -\frac{7}{7} = -1 \][/tex]
So, the denominator becomes:
[tex]\[ v^{-1} \][/tex]

2. Combine the exponents in the fraction:
Now, we have:
[tex]\[ \frac{v^{-\frac{1}{3}}}{v^{-1}} \][/tex]
This can be simplified by subtracting the exponent of the denominator from the exponent of the numerator:
[tex]\[ v^{-\frac{1}{3} - (-1)} = v^{-\frac{1}{3} + 1} \][/tex]

3. Simplify the exponent:
[tex]\[ -\frac{1}{3} + 1 = -\frac{1}{3} + \frac{3}{3} = \frac{2}{3} \][/tex]
So, the expression simplifies to:
[tex]\[ v^{\frac{2}{3}} \][/tex]

Thus, the simplified expression with positive exponents is:

[tex]\[ v^{\frac{2}{3}} \][/tex]

So the answer is:

[tex]\[ v^{\frac{2}{3}} \][/tex]