Answered

Warm-Up

Mark is playing a matching game to review factoring quadratic trinomials. He is matching the standard form and factored form of different expressions.

Help Mark complete the pairs of expressions.

Match each expression to its corresponding form:

- [tex](x+1)(x+5)[/tex]
- [tex]x^2 + 7x + 6[/tex]
- [tex](x+2)(x+3)[/tex]



Answer :

Alright, Mark, let’s carefully pair each expression in its factored and standard form step by step.

1. Expanding [tex]\((x+1)(x+5)\)[/tex]:

First, we'll use the distributive property (FOIL method) to expand this product of binomials:
[tex]\[ (x+1)(x+5) = x(x+5) + 1(x+5) \][/tex]
Simplifying each term:
[tex]\[ = x^2 + 5x + x + 5 \][/tex]
Combining like terms:
[tex]\[ = x^2 + 6x + 5 \][/tex]

2. Expanding [tex]\((x+2)(x+3)\)[/tex]:

Again, using the distributive property:
[tex]\[ (x+2)(x+3) = x(x+3) + 2(x+3) \][/tex]
Simplifying each term:
[tex]\[ = x^2 + 3x + 2x + 6 \][/tex]
Combining like terms:
[tex]\[ = x^2 + 5x + 6 \][/tex]

3. Reviewing the terms:

Now compare the expanded forms with the given standard form expressions:

[tex]\[ \text{Standard form: } x^2 + 6x + 5 \][/tex]
This corresponds to:
[tex]\[ \text{Factored form: } (x+1)(x+5) \][/tex]

[tex]\[ \text{Standard form: } x^2 + 5x + 6 \][/tex]
This corresponds to:
[tex]\[ \text{Factored form: } (x+2)(x+3) \][/tex]

Given the standard form expression:
[tex]\[ x^2 + 7x + 6 \][/tex]

4. Matching Factored Form to Standard Form:

Comparing each expanded version with [tex]\(x^2 + 7x + 6\)[/tex]:

- [tex]\(x^2 + 6x + 5\)[/tex] does not match with [tex]\(x^2 + 7x + 6\)[/tex].
- [tex]\(x^2 + 5x + 6\)[/tex] does not match with [tex]\(x^2 + 7x + 6\)[/tex].

Thus, we need to factor [tex]\(x^2 + 7x + 6\)[/tex]:

[tex]\[ \text{Factoring: } x^2 + 7x + 6 = (x+1)(x+6) \][/tex]

5. Completing Matches:

Thus, Mark should match:

- [tex]\((x+1)(x+5)\)[/tex] with [tex]\(x^2 + 6x + 5\)[/tex]
- [tex]\((x+2)(x+3)\)[/tex] with [tex]\(x^2 + 5x + 6\)[/tex]
- [tex]\((x+1)(x+6)\)[/tex] with [tex]\(x^2 + 7x + 6\)[/tex]

By following these detailed steps, we identify the correct pairings of factored and standard forms for each expression Mark is working on.

Summary of matches:
- [tex]\(x^2 + 6x + 5\)[/tex] matches [tex]\((x+1)(x+5)\)[/tex]
- [tex]\(x^2 + 5x + 6\)[/tex] matches [tex]\((x+2)(x+3)\)[/tex]
- [tex]\(x^2 + 7x + 6\)[/tex] matches [tex]\((x+1)(x+6)\)[/tex]