Answer :

Certainly! Let's simplify the given expression step-by-step:

The original expression to simplify is:
[tex]\[ \frac{v^{-\frac{1}{3}}}{v^{-\frac{6}{7}} v^{-\frac{2}{7}}} \][/tex]

First, combine the exponents in the denominator:
[tex]\[ v^{-\frac{6}{7}} \cdot v^{-\frac{2}{7}} = v^{-\frac{6}{7} - \frac{2}{7}} = v^{-\frac{8}{7}} \][/tex]

Now, the expression simplifies to:
[tex]\[ \frac{v^{-\frac{1}{3}}}{v^{-\frac{8}{7}}} \][/tex]

Using the property of exponents that states [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex], we get:
[tex]\[ v^{-\frac{1}{3}} \div v^{-\frac{8}{7}} = v^{-\frac{1}{3} - (-\frac{8}{7})} = v^{-\frac{1}{3} + \frac{8}{7}} \][/tex]

To combine the exponents [tex]\(-\frac{1}{3}\)[/tex] and [tex]\(\frac{8}{7}\)[/tex], we need a common denominator. The common denominator for 3 and 7 is 21.

Converting:
[tex]\[ -\frac{1}{3} = -\frac{7}{21} \][/tex]

[tex]\[ \frac{8}{7} = \frac{24}{21} \][/tex]

Now, add the exponents:
[tex]\[ -\frac{7}{21} + \frac{24}{21} = \frac{-7 + 24}{21} = \frac{17}{21} \][/tex]

Thus, the expression simplifies to:
[tex]\[ v^{\frac{17}{21}} \][/tex]

So, the simplified expression using only positive exponents is:
[tex]\[ v^{\frac{17}{21}} \][/tex]