Select the correct answer.

What is the domain of this function?

[tex] f(x)=-\frac{1}{4}|2x+1|-1 [/tex]

A. [tex] \left[\frac{1}{4}, \infty\right) [/tex]

B. [tex] \left(-\infty, -\frac{1}{2}\right] [/tex]

C. [tex] \left(-\infty, -\frac{1}{4}\right] [/tex]

D. [tex] (-\infty, \infty) [/tex]



Answer :

To determine the domain of the function [tex]\( f(x) = -\frac{1}{4} |2x + 1| - 1 \)[/tex], we need to identify all the possible values of [tex]\( x \)[/tex] for which the function is defined.

1. Start by noting that the function [tex]\( f(x) \)[/tex] involves the absolute value expression [tex]\( |2x + 1| \)[/tex].

2. The absolute value function [tex]\( |y| \)[/tex] is defined for all real numbers [tex]\( y \)[/tex].

3. Here, [tex]\( y = 2x + 1 \)[/tex]. Since an absolute value function is always defined regardless of the input, [tex]\( 2x + 1 \)[/tex] can take any real number value.

4. Other operations in the function are:
- Scaling the absolute value by a constant factor [tex]\( -\frac{1}{4} \)[/tex].
- Subtracting 1 from the scaled absolute value.

5. The operations of scaling and subtracting a constant do not place any restrictions on the domain. They are both defined for all real numbers.

Therefore, there are no restrictions on the value of [tex]\( x \)[/tex]. The function [tex]\( f(x) \)[/tex] is defined for all real numbers [tex]\( x \)[/tex].

Hence, the domain of the function [tex]\( f(x) = -\frac{1}{4} |2x + 1| - 1 \)[/tex] is:
[tex]\[ (-\infty, \infty) \][/tex]

The correct answer is:
D. [tex]\( (-\infty, \infty) \)[/tex]