Which system of equations has a solution of [tex]$(-2, 0, 1)$[/tex]?

A.
[tex]
\begin{aligned}
x + y & = -2 \\
y - z & = 1 \\
x + y - z & = -1
\end{aligned}
[/tex]

B.
[tex]
\begin{aligned}
x + y & = -2 \\
y - z & = 1 \\
z + y - z & = -1 \\
3x - y & = -6 \\
2y - 5z & = -5 \\
z - y - 2z & = -4
\end{aligned}
[/tex]

C.
[tex]
\begin{array}{r}
-2x + 2y = 4 \\
y + 7z = -7 \\
x - y - z = -3
\end{array}
[/tex]

D.
[tex]
\begin{array}{r}
-3x + 2y = 6 \\
y + 2z = 2 \\
z - y - z = -1
\end{array}
[/tex]



Answer :

To determine which system of equations has the solution [tex]\((-2, 0, 1)\)[/tex], we'll test each system by substituting [tex]\(x = -2\)[/tex], [tex]\(y = 0\)[/tex], and [tex]\(z = 1\)[/tex] into each equation and checking if all the equations in the system are satisfied.

### System A
[tex]\[ \begin{aligned} x + y & = -2 \\ -2 + 0 & = -2 \quad \text{(True)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} y - z & = 1 \\ 0 - 1 & = -1 \quad \text{(False)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} x + y - z & = -1 \\ -2 + 0 - 1 & = -3 \quad \text{(False)} \end{aligned} \][/tex]
Since not all equations are satisfied, System A does not have [tex]\((-2, 0, 1)\)[/tex] as a solution.

### System B
[tex]\[ \begin{aligned} x + y & = -2 \\ -2 + 0 & = -2 \quad \text{(True)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} y - z & = 1 \\ 0 - 1 & = -1 \quad \text{(False)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} z + y - z & = -1 \\ 1 + 0 - 1 & = y = 0 \quad \text{(False, this simplifies to } y = 0 \text{, not a valid equation)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} 3x - y & = -6 \\ 3(-2) - 0 & = -6 \quad \text{(True)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} 2y - 5z & = -5 \\ 2(0) - 5(1) & = -5 \quad \text{(True)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} z - y - 2z & = -4 \\ 1 - 0 - 2(1) & = -1 \quad \text{(False)} \end{aligned} \][/tex]
Since not all equations are satisfied, System B does not have [tex]\((-2, 0, 1)\)[/tex] as a solution.

### System C
[tex]\[ \begin{aligned} -2x + 2y & = 4 \\ -2(-2) + 2(0) & = 4 \quad \text{(True)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} y + 7z & = -7 \\ 0 + 7(1) & = 7 \quad \text{(False)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} x - y - z & = -3 \\ -2 - 0 - 1 & = -3 \quad \text{(True)} \end{aligned} \][/tex]
Since not all equations are satisfied, System C does not have [tex]\((-2, 0, 1)\)[/tex] as a solution.

### System D
[tex]\[ \begin{aligned} -3x + 2y & = 6 \\ -3(-2) + 2(0) & = 6 \quad \text{(True)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} y + 2z & = 2 \\ 0 + 2(1) & = 2 \quad \text{(True)} \end{aligned} \][/tex]
[tex]\[ \begin{aligned} z - y - z & = -1 \\ 1 - 0 - 1 & = 0 \quad \text{(False)} \end{aligned} \][/tex]
Since not all equations are satisfied, System D does not have [tex]\((-2, 0, 1)\)[/tex] as a solution.

### Conclusion
None of the systems (A, B, C, or D) satisfy the solution [tex]\((-2, 0, 1)\)[/tex] fully. Therefore, the answer is that none of the given systems of equations have [tex]\((-2, 0, 1)\)[/tex] as a solution.