Solve using substitution.

[tex]\[
\left\{
\begin{array}{l}
5x + y = -2 \\
x + 2y = 5
\end{array}
\right.
\][/tex]

Write your answer as an ordered pair [tex]\((x, y)\)[/tex].

Answer: [tex]\(\square\)[/tex]



Answer :

To solve the given system of equations using substitution, we'll proceed step-by-step.

The system of equations is:
[tex]\[ \begin{cases} 5x + y = -2 \\ x + 2y = 5 \end{cases} \][/tex]

Step 1: Solve one of the equations for one variable in terms of the other.

Let's solve the second equation [tex]\( x + 2y = 5 \)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ x + 2y = 5 \implies x = 5 - 2y \][/tex]

Step 2: Substitute this expression into the other equation.

We'll substitute [tex]\( x = 5 - 2y \)[/tex] into the first equation [tex]\( 5x + y = -2 \)[/tex]:
[tex]\[ 5(5 - 2y) + y = -2 \][/tex]
Simplify the equation:
[tex]\[ 25 - 10y + y = -2 \implies 25 - 9y = -2 \][/tex]

Step 3: Solve for [tex]\( y \)[/tex].

Move the constant term to the other side of the equation:
[tex]\[ 25 - 9y = -2 \implies -9y = -2 - 25 \implies -9y = -27 \][/tex]
Divide both sides by [tex]\(-9\)[/tex]:
[tex]\[ y = \frac{-27}{-9} = 3 \][/tex]

Step 4: Substitute [tex]\( y \)[/tex] back into the expression we found for [tex]\( x \)[/tex].

Using [tex]\( x = 5 - 2y \)[/tex] and substituting [tex]\( y = 3 \)[/tex]:
[tex]\[ x = 5 - 2(3) \implies x = 5 - 6 \implies x = -1 \][/tex]

Conclusion:

The solution to the system of equations, written as an ordered pair [tex]\((x, y)\)[/tex], is:
[tex]\[ (x, y) = (-1, 3) \][/tex]

Answer: [tex]\(\boxed{(-1, 3)}\)[/tex]