Find the area of a triangle whose two sides are 12 inches and 14 inches long, and which has a perimeter of 34 inches.

A. [tex]$79.84 \, \text{in}^2$[/tex]
B. [tex]$24.74 \, \text{in}^2$[/tex]
C. [tex]$23.24 \, \text{in}^2$[/tex]
D. [tex]$47.91 \, \text{in}^2$[/tex]



Answer :

To solve for the area of a triangle with two given sides, [tex]\( a = 12 \)[/tex] inches and [tex]\( b = 14 \)[/tex] inches, and a given perimeter of 34 inches, follow these steps:

1. Determine the length of the third side:

Given the perimeter [tex]\( P \)[/tex] of the triangle is 34 inches, we have:
[tex]\[ P = a + b + c \][/tex]
Substituting the known values:
[tex]\[ 34 = 12 + 14 + c \][/tex]
Solving for [tex]\( c \)[/tex]:
[tex]\[ c = 34 - 12 - 14 = 8 \text{ inches} \][/tex]

2. Calculate the semi-perimeter [tex]\( s \)[/tex]:

The semi-perimeter of a triangle is half of the perimeter:
[tex]\[ s = \frac{P}{2} \][/tex]
Substituting the known perimeter:
[tex]\[ s = \frac{34}{2} = 17 \text{ inches} \][/tex]

3. Use Heron's formula to find the area:

Heron's formula for the area [tex]\( A \)[/tex] of a triangle is given by:
[tex]\[ A = \sqrt{s(s - a)(s - b)(s - c)} \][/tex]
Substituting the values of [tex]\( s \)[/tex], [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ A = \sqrt{17 \times (17 - 12) \times (17 - 14) \times (17 - 8)} \][/tex]
[tex]\[ A = \sqrt{17 \times 5 \times 3 \times 9} \][/tex]
Calculating the values inside the square root:
[tex]\[ A = \sqrt{17 \times 5 \times 3 \times 9} = \sqrt{2295} \][/tex]

4. Determine the numerical value of the area:

Calculating the square root of 2295:
[tex]\[ A \approx 47.91 \text{ square inches} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{47.91 \text{ in}^2} \][/tex]

This matches option D in the provided choices.