Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[ \frac{6ab}{\left(a^0 b^2\right)^4} \][/tex]

A. [tex]\(\frac{6}{a^3 b^5}\)[/tex]
B. [tex]\(\frac{6}{a^3 b^7}\)[/tex]
C. [tex]\(\frac{6a}{b^7}\)[/tex]
D. [tex]\(\frac{6a}{b^5}\)[/tex]



Answer :

To determine the equivalent expression for [tex]\(\frac{6ab}{(a^0 b^2)^4}\)[/tex], we will follow a step-by-step approach to simplify the given expression.

1. Simplify the denominator:
- Recall that [tex]\(a^0 = 1\)[/tex] for any value of [tex]\(a\)[/tex]. This means that [tex]\(a^0\)[/tex] effectively disappears in the multiplication.
- Hence, inside the parenthesis, we have [tex]\(a^0 b^2 = 1 \cdot b^2 = b^2\)[/tex].

2. Raise the denominator to the power 4:
- We need to raise [tex]\(b^2\)[/tex] to the power 4:
[tex]\[ (b^2)^4 = b^{2 \cdot 4} = b^8 \][/tex]

3. Rewrite the original expression with the simplified denominator:
- Substitute [tex]\(b^8\)[/tex] into the denominator of the original expression:
[tex]\[ \frac{6ab}{b^8} \][/tex]

4. Simplify the fraction:
- When simplifying the fraction involving exponents with the same base, subtract the exponents:
[tex]\[ \frac{6ab}{b^8} = 6a \cdot \frac{b}{b^8} = 6a \cdot b^{1-8} = 6a \cdot b^{-7} = \frac{6a}{b^7} \][/tex]

Therefore, the equivalent expression for [tex]\(\frac{6ab}{(a^0 b^2)^4}\)[/tex] is [tex]\(\frac{6a}{b^7}\)[/tex].

Hence, the correct answer is:
C. [tex]\(\frac{6 a}{b^7}\)[/tex]