Select the correct answer.

Which expression is equivalent to the given expression?

[tex](3y - 4)(2y + 7) + 11y - 9[/tex]

A. [tex]16y - 6[/tex]
B. [tex]9y - 37[/tex]
C. [tex]6y^2 + 24y - 37[/tex]
D. [tex]6y^2 + 11y + 19[/tex]



Answer :

Let's simplify the given expression step-by-step to find the equivalent expression. The given expression is:

[tex]\[ (3y - 4)(2y + 7) + 11y - 9 \][/tex]

To simplify this, we follow these steps:

1. Distribute the terms within the first part of the expression, [tex]\((3y - 4)(2y + 7)\)[/tex]:

[tex]\[ (3y - 4)(2y + 7) = 3y \cdot 2y + 3y \cdot 7 - 4 \cdot 2y - 4 \cdot 7 \][/tex]

Calculate each term:

[tex]\[ 3y \cdot 2y = 6y^2 \][/tex]

[tex]\[ 3y \cdot 7 = 21y \][/tex]

[tex]\[ -4 \cdot 2y = -8y \][/tex]

[tex]\[ -4 \cdot 7 = -28 \][/tex]

So, the expression [tex]\((3y - 4)(2y + 7)\)[/tex] simplifies to:

[tex]\[ 6y^2 + 21y - 8y - 28 \][/tex]

Combine like terms:

[tex]\[ 6y^2 + (21y - 8y) - 28 = 6y^2 + 13y - 28 \][/tex]

2. Combine the simplified part with the remaining terms of the original expression, [tex]\((6y^2 + 13y - 28) + 11y - 9\)[/tex]:

First, combine the like terms [tex]\(13y\)[/tex] and [tex]\(11y\)[/tex]:

[tex]\[ 6y^2 + 13y + 11y - 28 - 9 \][/tex]

Simplify:

[tex]\[ 6y^2 + 24y - 37 \][/tex]

So, the simplified expression is:

[tex]\[ 6y^2 + 24y - 37 \][/tex]

Thus, the correct answer is:

C. [tex]\(\boxed{6y^2 + 24y - 37}\)[/tex]