Select the correct answer.

Which equation is equivalent to the given equation?
[tex]\[ x^2 - 6x = 8 \][/tex]

A. [tex]\((x-6)^2 = 44\)[/tex]

B. [tex]\((x-3)^2 - 17\)[/tex]

C. [tex]\((x-6)^2 = 20\)[/tex]

D. [tex]\((x-3)^2 = 14\)[/tex]



Answer :

To find an equation equivalent to [tex]\( x^2 - 6x = 8 \)[/tex], we will start by rearranging the expression and completing the square.

Step 1: Start with the given equation:
[tex]\[ x^2 - 6x = 8 \][/tex]

Step 2: Move the constant term to the left side to set the equation to zero:
[tex]\[ x^2 - 6x - 8 = 0 \][/tex]

Step 3: Complete the square on the left side.

[tex]\[ x^2 - 6x \][/tex]

To complete the square, we take half of the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-6\)[/tex]), then square it:
[tex]\[ \left(\frac{-6}{2}\right)^2 = 9 \][/tex]

Step 4: Add and subtract 9 within the equation to complete the square:
[tex]\[ x^2 - 6x + 9 - 9 - 8 = 0 \][/tex]
[tex]\[ (x - 3)^2 - 9 - 8 = 0 \][/tex]

Step 5: Simplify the equation:
[tex]\[ (x - 3)^2 - 17 = 0 \][/tex]

Step 6: Move 17 to the other side to isolate the square term:
[tex]\[ (x - 3)^2 = 17 \][/tex]

Therefore, the correct equation equivalent to the given equation [tex]\( x^2 - 6x = 8 \)[/tex] is:
[tex]\[ (x - 3)^2 = 17 \][/tex]

The correct answer is:
B. [tex]\((x - 3)^2 = 17\)[/tex]