Answered

Select the correct answer.

What is the product [tex]\((1+i)(2+i)\)[/tex]?
A. [tex]\(3+2i\)[/tex]
B. [tex]\(3-1\)[/tex]
C. [tex]\(3+i\)[/tex]
D. [tex]\(1-3i\)[/tex]
E. [tex]\(1+3i\)[/tex]



Answer :

To find the product of the two complex numbers [tex]\((1+i)(2+i)\)[/tex], follow these steps:

1. Distribute the terms using the distributive property (also known as the FOIL method for binomials):

[tex]\[ (1+i)(2+i) = 1 \cdot 2 + 1 \cdot i + i \cdot 2 + i \cdot i \][/tex]

2. Calculate each term of the product:

- [tex]\(1 \cdot 2 = 2\)[/tex]
- [tex]\(1 \cdot i = i\)[/tex]
- [tex]\(i \cdot 2 = 2i\)[/tex]
- [tex]\(i \cdot i = i^2\)[/tex]

3. Combine these results:

[tex]\[ 2 + i + 2i + i^2 \][/tex]

4. Simplify the expression:

- Combine the like terms involving [tex]\(i\)[/tex]: [tex]\(i + 2i = 3i\)[/tex]
- Recall that [tex]\(i^2 = -1\)[/tex].

So the expression becomes:

[tex]\[ 2 + 3i + (-1) \][/tex]

5. Simplify further by combining the real parts:

[tex]\[ 2 - 1 + 3i = 1 + 3i \][/tex]

Therefore, the product [tex]\((1+i)(2+i)\)[/tex] is:

[tex]\[ \boxed{1 + 3i} \][/tex]

The correct answer is:

E. [tex]\(\quad 1+3 i\)[/tex]