The function [tex]$h(x)$[/tex] is quadratic and [tex]$h(3)=h(-10)=0$[/tex]. Which could represent [tex][tex]$h(x)$[/tex][/tex]?

A. [tex]h(x)=x^2-13x-30[/tex]

B. [tex]h(x)=x^2-7x-30[/tex]

C. [tex]h(x)=2x^2+26x-60[/tex]

D. [tex]h(x)=2x^2+14x-60[/tex]



Answer :

To determine which function [tex]\( h(x) \)[/tex] satisfies the conditions [tex]\( h(3) = 0 \)[/tex] and [tex]\( h(-10) = 0 \)[/tex], we will evaluate each of the given functions at [tex]\( x = 3 \)[/tex] and [tex]\( x = -10 \)[/tex].

Let's consider each function and evaluate accordingly:

1. [tex]\( h(x) = x^2 - 13x - 30 \)[/tex]
[tex]\[ h(3) = 3^2 - 13(3) - 30 = 9 - 39 - 30 = -60 \][/tex]
[tex]\[ h(-10) = (-10)^2 - 13(-10) - 30 = 100 + 130 - 30 = 200 \][/tex]

2. [tex]\( h(x) = x^2 - 7x - 30 \)[/tex]
[tex]\[ h(3) = 3^2 - 7(3) - 30 = 9 - 21 - 30 = -42 \][/tex]
[tex]\[ h(-10) = (-10)^2 - 7(-10) - 30 = 100 + 70 - 30 = 140 \][/tex]

3. [tex]\( h(x) = 2x^2 + 26x - 60 \)[/tex]
[tex]\[ h(3) = 2(3^2) + 26(3) - 60 = 2(9) + 78 - 60 = 18 + 78 - 60 = 36 \][/tex]
[tex]\[ h(-10) = 2(-10)^2 + 26(-10) - 60 = 2(100) - 260 - 60 = 200 - 260 - 60 = -120 \][/tex]

4. [tex]\( h(x) = 2x^2 + 14x - 60 \)[/tex]
[tex]\[ h(3) = 2(3^2) + 14(3) - 60 = 2(9) + 42 - 60 = 18 + 42 - 60 = 0 \][/tex]
[tex]\[ h(-10) = 2(-10)^2 + 14(-10) - 60 = 2(100) - 140 - 60 = 200 - 140 - 60 = 0 \][/tex]

From our evaluations:

- For [tex]\( h(x) = x^2 - 13x - 30 \)[/tex], [tex]\( h(3) = -60 \)[/tex] and [tex]\( h(-10) = 200 \)[/tex].
- For [tex]\( h(x) = x^2 - 7x - 30 \)[/tex], [tex]\( h(3) = -42 \)[/tex] and [tex]\( h(-10) = 140 \)[/tex].
- For [tex]\( h(x) = 2x^2 + 26x - 60 \)[/tex], [tex]\( h(3) = 36 \)[/tex] and [tex]\( h(-10) = -120 \)[/tex].
- For [tex]\( h(x) = 2x^2 + 14x - 60 \)[/tex], [tex]\( h(3) = 0 \)[/tex] and [tex]\( h(-10) = 0 \)[/tex].

Only the function [tex]\( h(x) = 2x^2 + 14x - 60 \)[/tex] satisfies both conditions [tex]\( h(3) = 0 \)[/tex] and [tex]\( h(-10) = 0 \)[/tex].

Thus, the function [tex]\( h(x) \)[/tex] that represents [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x) = 2x^2 + 14x - 60 \][/tex]