Identify the equation of the circle that has its center at [tex]\((-8, 15)\)[/tex] and passes through the origin.

A. [tex]\((x + 8)^2 + (y - 15)^2 = 289\)[/tex]

B. [tex]\((x - 8)^2 + (y + 15)^2 = 289\)[/tex]

C. [tex]\((x - 8)^2 + (y + 15)^2 = 17\)[/tex]

D. [tex]\((x + 8)^2 + (y - 15)^2 = 17\)[/tex]



Answer :

To identify the equation of the circle that has its center at [tex]\((-8, 15)\)[/tex] and passes through the origin, we follow these steps:

1. Determine the center of the circle:
The center is given as [tex]\((-8, 15)\)[/tex].

2. Find the radius of the circle:
The radius can be determined using the distance formula between the center of the circle [tex]\((-8, 15)\)[/tex] and the origin [tex]\((0, 0)\)[/tex].

The distance formula is:
[tex]\[ r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Plugging in the coordinates of the center and the origin:
[tex]\[ r = \sqrt{(-8 - 0)^2 + (15 - 0)^2} \][/tex]

Simplifying within the square root:
[tex]\[ r = \sqrt{(-8)^2 + (15)^2} = \sqrt{64 + 225} = \sqrt{289} \][/tex]

Therefore, the radius [tex]\( r \)[/tex] is:
[tex]\[ r = 17 \][/tex]

3. Write the general equation of the circle:
The general form of the equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Given the center [tex]\((-8, 15)\)[/tex] and radius [tex]\( 17 \)[/tex], we substitute [tex]\(h = -8\)[/tex], [tex]\( k = 15\)[/tex], and [tex]\( r = 17 \)[/tex]:
[tex]\[ (x - (-8))^2 + (y - 15)^2 = 17^2 \][/tex]

Simplifying the expression, this becomes:
[tex]\[ (x + 8)^2 + (y - 15)^2 = 289 \][/tex]

So the equation of the circle is:
[tex]\[ (x + 8)^2 + (y - 15)^2 = 289 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A. \ (x+8)^2+(y-15)^2=289} \][/tex]