Instructions: Given the coordinates, complete the translation [tex]\((x, y) \rightarrow (x-4, y)\)[/tex].

[tex]\[
\begin{array}{l}
I(0, -3) \\
J(0, -2) \\
K(2, -2) \\
L(4, -4)
\end{array}
\][/tex]

Solution:

[tex]\[
\begin{array}{l}
I^{\prime}(\square, \square) \\
J^{\prime}(\square, \square) \\
K^{\prime}(\square, \square) \\
L^{\prime}(\square, \square)
\end{array}
\][/tex]



Answer :

To complete the translation [tex]\((x, y) \rightarrow (x-4, y)\)[/tex], we will subtract 4 from the [tex]\(x\)[/tex]-coordinate of each point while keeping the [tex]\(y\)[/tex]-coordinate the same.

Let's start with the points:

1. [tex]\( I(0, -3) \)[/tex]
2. [tex]\( J(0, -2) \)[/tex]
3. [tex]\( K(2, -2) \)[/tex]
4. [tex]\( L(4, -4) \)[/tex]

Step-by-Step Solution:

1. Point [tex]\( I(0, -3) \)[/tex]:
[tex]\[ x = 0 \quad \text{and} \quad y = -3 \][/tex]
Applying the translation [tex]\( (x - 4, y) \)[/tex]:
[tex]\[ x' = 0 - 4 = -4 \quad \text{and} \quad y' = -3 \][/tex]
So, [tex]\( I'(-4, -3) \)[/tex].

2. Point [tex]\( J(0, -2) \)[/tex]:
[tex]\[ x = 0 \quad \text{and} \quad y = -2 \][/tex]
Applying the translation [tex]\( (x - 4, y) \)[/tex]:
[tex]\[ x' = 0 - 4 = -4 \quad \text{and} \quad y' = -2 \][/tex]
So, [tex]\( J'(-4, -2) \)[/tex].

3. Point [tex]\( K(2, -2) \)[/tex]:
[tex]\[ x = 2 \quad \text{and} \quad y = -2 \][/tex]
Applying the translation [tex]\( (x - 4, y) \)[/tex]:
[tex]\[ x' = 2 - 4 = -2 \quad \text{and} \quad y' = -2 \][/tex]
So, [tex]\( K'(-2, -2) \)[/tex].

4. Point [tex]\( L(4, -4) \)[/tex]:
[tex]\[ x = 4 \quad \text{and} \quad y = -4 \][/tex]
Applying the translation [tex]\( (x - 4, y) \)[/tex]:
[tex]\[ x' = 4 - 4 = 0 \quad \text{and} \quad y' = -4 \][/tex]
So, [tex]\( L'(0, -4) \)[/tex].

Therefore, the translated coordinates are:
[tex]\[ \begin{array}{l} I'(-4, -3) \\ J'(-4, -2) \\ K'(-2, -2) \\ L'(0, -4) \end{array} \][/tex]

These are the new positions of the points after the translation.