Answer :
To determine which matrices satisfy the condition [tex]\(A^2 = A\)[/tex], known as being idempotent, we need to verify that for each given matrix [tex]\(A\)[/tex], squaring the matrix results in the same matrix. Let's analyze each matrix step by step.
1. Matrix [tex]\(A_1\)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} 5 & 5 \\ -4 & -4 \end{pmatrix} \][/tex]
This matrix is idempotent because [tex]\(A_1^2 = A_1\)[/tex].
2. Matrix [tex]\(A_2\)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} 6 & 5 \\ 5 & 6 \end{pmatrix} \][/tex]
This matrix is not idempotent because [tex]\(A_2^2 \neq A_2\)[/tex].
3. Matrix [tex]\(A_3\)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix} \][/tex]
This matrix is idempotent because [tex]\(A_3^2 = A_3\)[/tex].
4. Matrix [tex]\(A_4\)[/tex]:
[tex]\[ A_4 = \begin{pmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{pmatrix} \][/tex]
This matrix is not idempotent because [tex]\(A_4^2 \neq A_4\)[/tex].
5. Matrix [tex]\(A_5\)[/tex]:
[tex]\[ A_5 = \begin{pmatrix} -6 & -6 \\ 5 & 5 \end{pmatrix} \][/tex]
This matrix is not idempotent because [tex]\(A_5^2 \neq A_5\)[/tex].
Therefore, the matrices which are idempotent (satisfying [tex]\(A^2 = A\)[/tex]) are:
[tex]\[ \begin{pmatrix} 5 & 5 \\ -4 & -4 \end{pmatrix} \][/tex]
and
[tex]\[ \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix}. \][/tex]
1. Matrix [tex]\(A_1\)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} 5 & 5 \\ -4 & -4 \end{pmatrix} \][/tex]
This matrix is idempotent because [tex]\(A_1^2 = A_1\)[/tex].
2. Matrix [tex]\(A_2\)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} 6 & 5 \\ 5 & 6 \end{pmatrix} \][/tex]
This matrix is not idempotent because [tex]\(A_2^2 \neq A_2\)[/tex].
3. Matrix [tex]\(A_3\)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix} \][/tex]
This matrix is idempotent because [tex]\(A_3^2 = A_3\)[/tex].
4. Matrix [tex]\(A_4\)[/tex]:
[tex]\[ A_4 = \begin{pmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{pmatrix} \][/tex]
This matrix is not idempotent because [tex]\(A_4^2 \neq A_4\)[/tex].
5. Matrix [tex]\(A_5\)[/tex]:
[tex]\[ A_5 = \begin{pmatrix} -6 & -6 \\ 5 & 5 \end{pmatrix} \][/tex]
This matrix is not idempotent because [tex]\(A_5^2 \neq A_5\)[/tex].
Therefore, the matrices which are idempotent (satisfying [tex]\(A^2 = A\)[/tex]) are:
[tex]\[ \begin{pmatrix} 5 & 5 \\ -4 & -4 \end{pmatrix} \][/tex]
and
[tex]\[ \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix}. \][/tex]