Instructions: Given the coordinates, complete the translation [tex](x, y) \rightarrow (x+2, y-2)[/tex].

[tex]\[
\begin{array}{l}
C(-5,-1) \\
D(-4,3) \\
E(-3,2) \\
F(-2,0)
\end{array}
\][/tex]

Solution:

[tex]\[
\begin{array}{l}
C'(\square, \square) \\
D'(\square, \square) \\
E'(\square, \square) \\
F'(\square, \square)
\end{array}
\][/tex]



Answer :

To complete this translation, we need to apply the given translation rule [tex]\((x, y) \rightarrow (x+2, y-2)\)[/tex] to each of the original coordinates. This means we will add 2 to the [tex]\( x \)[/tex]-coordinate and subtract 2 from the [tex]\( y \)[/tex]-coordinate for each point. Let's go through this step by step:

1. First point [tex]\( C(-5, -1) \)[/tex]:
[tex]\[ \begin{aligned} x & = -5 + 2 = -3 \\ y & = -1 - 2 = -3 \end{aligned} \][/tex]
So, [tex]\( C' \)[/tex] becomes [tex]\( (-3, -3) \)[/tex].

2. Second point [tex]\( D(-4, 3) \)[/tex]:
[tex]\[ \begin{aligned} x & = -4 + 2 = -2 \\ y & = 3 - 2 = 1 \end{aligned} \][/tex]
So, [tex]\( D' \)[/tex] becomes [tex]\( (-2, 1) \)[/tex].

3. Third point [tex]\( E(-3, 2) \)[/tex]:
[tex]\[ \begin{aligned} x & = -3 + 2 = -1 \\ y & = 2 - 2 = 0 \end{aligned} \][/tex]
So, [tex]\( E' \)[/tex] becomes [tex]\( (-1, 0) \)[/tex].

4. Fourth point [tex]\( F(-2, 0) \)[/tex]:
[tex]\[ \begin{aligned} x & = -2 + 2 = 0 \\ y & = 0 - 2 = -2 \end{aligned} \][/tex]
So, [tex]\( F' \)[/tex] becomes [tex]\( (0, -2) \)[/tex].

Putting this all together, we get the translated coordinates:

[tex]\[ \begin{aligned} C' & (-3, -3) \\ D' & (-2, 1) \\ E' & (-1, 0) \\ F' & (0, -2) \end{aligned} \][/tex]