Answer :
To find the expected value (mean) [tex]\(\mu\)[/tex] of a random variable given its probability distribution, we use the following formula:
[tex]\[ \mu = \sum x_i P_i \][/tex]
where [tex]\(x_i\)[/tex] represents the value of the random variable and [tex]\(P_i\)[/tex] represents the probability of [tex]\(x_i\)[/tex].
Given the values and their respective probabilities:
[tex]\[ \begin{array}{c|c} x & P \\ \hline 0 & 0.08 \\ 1 & 0.12 \\ 2 & 0.22 \\ 3 & 0.24 \\ 4 & 0.18 \\ 5 & 0.16 \\ \end{array} \][/tex]
We calculate the expected value by multiplying each value of the random variable [tex]\(x_i\)[/tex] by its corresponding probability [tex]\(P_i\)[/tex] and then summing these products:
[tex]\[ \mu = (0 \times 0.08) + (1 \times 0.12) + (2 \times 0.22) + (3 \times 0.24) + (4 \times 0.18) + (5 \times 0.16) \][/tex]
Let's compute each term individually:
[tex]\[ 0 \times 0.08 = 0 \][/tex]
[tex]\[ 1 \times 0.12 = 0.12 \][/tex]
[tex]\[ 2 \times 0.22 = 0.44 \][/tex]
[tex]\[ 3 \times 0.24 = 0.72 \][/tex]
[tex]\[ 4 \times 0.18 = 0.72 \][/tex]
[tex]\[ 5 \times 0.16 = 0.8 \][/tex]
Next, we sum these products:
[tex]\[ \mu = 0 + 0.12 + 0.44 + 0.72 + 0.72 + 0.8 = 2.8 \][/tex]
Therefore, the expected value [tex]\(\mu\)[/tex] is:
[tex]\[ \mu = 2.8 \][/tex]
[tex]\[ \mu = \sum x_i P_i \][/tex]
where [tex]\(x_i\)[/tex] represents the value of the random variable and [tex]\(P_i\)[/tex] represents the probability of [tex]\(x_i\)[/tex].
Given the values and their respective probabilities:
[tex]\[ \begin{array}{c|c} x & P \\ \hline 0 & 0.08 \\ 1 & 0.12 \\ 2 & 0.22 \\ 3 & 0.24 \\ 4 & 0.18 \\ 5 & 0.16 \\ \end{array} \][/tex]
We calculate the expected value by multiplying each value of the random variable [tex]\(x_i\)[/tex] by its corresponding probability [tex]\(P_i\)[/tex] and then summing these products:
[tex]\[ \mu = (0 \times 0.08) + (1 \times 0.12) + (2 \times 0.22) + (3 \times 0.24) + (4 \times 0.18) + (5 \times 0.16) \][/tex]
Let's compute each term individually:
[tex]\[ 0 \times 0.08 = 0 \][/tex]
[tex]\[ 1 \times 0.12 = 0.12 \][/tex]
[tex]\[ 2 \times 0.22 = 0.44 \][/tex]
[tex]\[ 3 \times 0.24 = 0.72 \][/tex]
[tex]\[ 4 \times 0.18 = 0.72 \][/tex]
[tex]\[ 5 \times 0.16 = 0.8 \][/tex]
Next, we sum these products:
[tex]\[ \mu = 0 + 0.12 + 0.44 + 0.72 + 0.72 + 0.8 = 2.8 \][/tex]
Therefore, the expected value [tex]\(\mu\)[/tex] is:
[tex]\[ \mu = 2.8 \][/tex]