Which of the following solutions is acidic?

A. [tex]\left[ OH ^{-}\right]=1.00 \times 10^{-5}[/tex]

B. [tex]\left[ H _3 O ^{+}\right]=1.00 \times 10^{-11}[/tex]

C. [tex]\left[ H _3 O ^{+}\right]=1.00 \times 10^{-8}[/tex]

D. [tex]\left[ H _3 O ^{+}\right]=1.00 \times 10^{-3}[/tex]

(Note: There may be more than one correct answer.)



Answer :

To determine which solutions are acidic, we need to examine their [tex]$[\text{H}_3\text{O}^+]$[/tex] or [tex]$[\text{OH}^-]$[/tex] concentrations.

The pH of a solution is calculated using:
[tex]\[ \text{pH} = -\log[\text{H}_3\text{O}^+] \][/tex]

A solution is considered acidic if its pH is less than 7.

1. Solution with [tex]$[\text{OH}^-] = 1.00 \times 10^{-5}$[/tex]:

First, calculate pOH:
[tex]\[ \text{pOH} = -\log [\text{OH}^-] \][/tex]

[tex]\[ \text{pOH} = -\log (1.00 \times 10^{-5}) = 5 \][/tex]

Since:
[tex]\[ \text{pH} + \text{pOH} = 14 \][/tex]

We can determine the pH:
[tex]\[ \text{pH} = 14 - \text{pOH} = 14 - 5 = 9 \][/tex]

Since pH = 9, this solution is not acidic (pH > 7).

2. Solution with [tex]$[\text{H}_3\text{O}^+] = 1.00 \times 10^{-11}$[/tex]:

Calculate the pH:
[tex]\[ \text{pH} = -\log (1.00 \times 10^{-11}) = 11 \][/tex]

Since pH = 11, this solution is not acidic (pH > 7).

3. Solution with [tex]$[\text{H}_3\text{O}^+] = 1.00 \times 10^{-8}$[/tex]:

Calculate the pH:
[tex]\[ \text{pH} = -\log (1.00 \times 10^{-8}) = 8 \][/tex]

Since pH = 8, this solution is not acidic (pH > 7).

4. Solution with [tex]$[\text{H}_3\text{O}^+] = 1.00 \times 10^{-3}$[/tex]:

Calculate the pH:
[tex]\[ \text{pH} = -\log (1.00 \times 10^{-3}) = 3 \][/tex]

Since pH = 3, this solution is acidic (pH < 7).

Thus, among the given solutions, the solution with [tex]$[\text{H}_3\text{O}^+] = 1.00 \times 10^{-3}$[/tex] is the only one that is acidic.