Complete the function table.

[tex]\[
\begin{array}{c|c}
\text{Input }(n) & \text{Output }(n+4) \\
\hline
-3 & - \\
1 & - \\
6 & - \\
\end{array}
\][/tex]

A.
[tex]\[
\begin{array}{c|c}
\text{Input }(n) & \text{Output }(n+4) \\
\hline
-3 & 1 \\
1 & 5 \\
6 & 10
\end{array}
\][/tex]



Answer :

To complete the function table where the output is calculated by adding 4 to each input value, let's proceed step-by-step for each input.

Step 1: Calculate the output for the first input value (-3)

- Input: -3
- Output: -3 + 4

Step 2: Calculate the output for the second input value (1)

- Input: 1
- Output: 1 + 4

Step 3: Calculate the output for the third input value (6)

- Input: 6
- Output: 6 + 4

Now, let's calculate each step:

1. For the input -3:
[tex]\[ -3 + 4 = 1 \][/tex]

2. For the input 1:
[tex]\[ 1 + 4 = 5 \][/tex]

3. For the input 6:
[tex]\[ 6 + 4 = 10 \][/tex]

Thus, the completed function table is:

[tex]\[ \begin{array}{c|c} \text { Input }(n) & \text { Output }(n+4) \\ \hline -3 & 1 \\ 1 & 5 \\ 6 & 10 \\ \end{array} \][/tex]

Therefore, the correct completed table looks like this:

[tex]\[ \begin{array}{c|c} \text { Input }(n) & \text { Output }(n+4) \\ -3 & 1 \\ 1 & 5 \\ 6 & 10 \\ \end{array} \][/tex]

Comparing this with the given options, the correct completed function table is not option A. The correct function table is as shown above:

[tex]\[ \left[\begin{array}{c|c} \text { Input }(n) & \text { Output }(n+4) \\ -3 & 1 \\ 1 & 5 \\ 6 & 10 \end{array}\right] \][/tex]