Which expression do you get when you eliminate the negative exponents of [tex]\frac{4 a^2 b^{-2}}{16 a^{-3} b}[/tex]?

A. [tex]\frac{a^2\left(a^{-3}\right)}{4 b\left(b^2\right)}[/tex]

B. [tex]\frac{1}{4 a b^3}[/tex]

C. [tex]\frac{4 a^2\left(a^{-3}\right)}{16 b\left(b^{-2}\right)}[/tex]

D. [tex]\frac{4\left(a^2\right)\left(a^3\right)}{16(b)\left(b^2\right)}[/tex]



Answer :

To solve the given problem, we need to simplify the expression [tex]\(\frac{4 a^2 b^{-2}}{16 a^{-3} b}\)[/tex] and eliminate the negative exponents. Let's go through the steps methodically:

### Step 1: Simplify the Coefficients
First, simplify the numerical coefficients:

[tex]\[ \frac{4}{16} = \frac{1}{4} \][/tex]

### Step 2: Apply Properties of Exponents
Use the properties of exponents to simplify the variables:

#### For [tex]\(a\)[/tex]:

[tex]\[ a^{2} \text{ in the numerator and } a^{-3} \text{ in the denominator can be combined as: } \][/tex]

[tex]\[ a^{2 - (-3)} = a^{2 + 3} = a^{5} \][/tex]

#### For [tex]\(b\)[/tex]:

[tex]\[ b^{-2} \text{ in the numerator and } b \text{ in the denominator can be combined as: } \][/tex]

[tex]\[ b^{-2 - 1} = b^{-3} \][/tex]

### Step 3: Combine the Results

[tex]\[ \frac{4 a^2 b^{-2}}{16 a^{-3} b} = \frac{1}{4} a^{5} b^{-3} \][/tex]

### Step 4: Eliminate the Negative Exponents
The final step is to eliminate the negative exponents. To do this, we use the property that [tex]\(x^{-n} = \frac{1}{x^{n}}\)[/tex].

[tex]\[ \frac{1}{4} a^{5} b^{-3} = \frac{a^{5}}{4 b^{3}} \][/tex]

We now have the expression with negative exponents eliminated.

[tex]\[ \frac{a^{5}}{4 b^{3}} = \frac{1}{4 a^{-5} b^{3}} \][/tex]

This matches the option:

[tex]\[ \boxed{\frac{1}{4 a b^{3}}} \][/tex]

So the correct answer is:

[tex]\[ \boxed{\frac{1}{4 a b^3}} \][/tex]