Solve the system of linear equations by graphing.

[tex]\[
\begin{array}{l}
y = -\frac{1}{2} x + 3 \\
y = \frac{1}{2} x - 2
\end{array}
\][/tex]

A. [tex]\(\left(\frac{1}{2}, -5\right)\)[/tex]

B. [tex]\(\left(\frac{1}{2}, 5\right)\)[/tex]

C. [tex]\(\left(5, \frac{1}{2}\right)\)[/tex]

D. [tex]\(\left(-5, \frac{1}{2}\right)\)[/tex]



Answer :

To solve the system of linear equations graphically, we need to find where the two lines intersect. Here are the steps:

1. Define the Equations:

We are given two equations:
[tex]\[ y = -\frac{1}{2} x + 3 \][/tex]
[tex]\[ y = \frac{1}{2} x - 2 \][/tex]

2. Set the Equations Equal to Each Other to Find [tex]\( x \)[/tex]:

Since both equations define [tex]\( y \)[/tex], we can set them equal to find the x-coordinate of the intersection:
[tex]\[ -\frac{1}{2} x + 3 = \frac{1}{2} x - 2 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Combine like terms to isolate [tex]\( x \)[/tex]:
[tex]\[ -\frac{1}{2} x + 3 = \frac{1}{2} x - 2 \][/tex]
Add [tex]\(\frac{1}{2} x\)[/tex] to both sides:
[tex]\[ 3 = x - 2 \][/tex]
Add 2 to both sides:
[tex]\[ x = 5 \][/tex]

4. Substitute [tex]\( x = 5 \)[/tex] Back into One of the Original Equations to Find [tex]\( y \)[/tex]:

We can use either of the original equations. Using the first one:
[tex]\[ y = -\frac{1}{2} \cdot 5 + 3 \][/tex]
Simplify:
[tex]\[ y = -\frac{5}{2} + 3 = -2.5 + 3 = 0.5 \][/tex]

5. Determine the Point of Intersection:

The point of intersection is [tex]\((5, 0.5)\)[/tex].

6. Evaluate the Possible Answer Choices:

The given answer choices are:
[tex]\[ \left(\frac{1}{2}, -5\right), \left(\frac{1}{2}, 5\right), \left(5, \frac{1}{2}\right), \left(-5, \frac{1}{2}\right) \][/tex]

Only one of the choices matches our intersection point [tex]\((5, 0.5)\)[/tex].

The correct answer is:
- [tex]\((5, 0.5)\)[/tex], which corresponds to the third choice.

Thus, the correct choice is:
[tex]\[ \boxed{(5, \frac{1}{2})} \][/tex]

This is the intersection point of the two lines, confirming our calculated solution.