Which expression is not equivalent to the other three?

A. [tex]2x + 2 + 2x + 3x - 8[/tex]

B. [tex]4 + 7x - 2[/tex]

C. [tex]-2 + 5x + 2x - 4[/tex]

D. [tex]8x - x - 6[/tex]



Answer :

Alright, let’s work through each expression step-by-step to simplify them.

### Expression 1:
[tex]\[2x + 2 + 2x + 3x - 8\][/tex]

1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[2x + 2x + 3x = 7x\][/tex]

2. Combine the constant terms:
[tex]\[2 - 8 = -6\][/tex]

So, the simplified form of the first expression is:
[tex]\[7x - 6\][/tex]

### Expression 2:
[tex]\[4 + 7x - 2\][/tex]

1. Combine the constant terms:
[tex]\[4 - 2 = 2\][/tex]

So, the simplified form of the second expression is:
[tex]\[7x + 2\][/tex]

### Expression 3:
[tex]\[-2 + 5x + 2x - 4\][/tex]

1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[5x + 2x = 7x\][/tex]

2. Combine the constant terms:
[tex]\[-2 - 4 = -6\][/tex]

So, the simplified form of the third expression is:
[tex]\[7x - 6\][/tex]

### Expression 4:
[tex]\[8x - x - 6\][/tex]

1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[8x - x = 7x\][/tex]

So, the simplified form of the fourth expression is:
[tex]\[7x - 6\][/tex]

### Conclusion:
The simplified forms of the expressions are:
1. [tex]\(7x - 6\)[/tex]
2. [tex]\(7x + 2\)[/tex]
3. [tex]\(7x - 6\)[/tex]
4. [tex]\(7x - 6\)[/tex]

From these simplified forms, it's clear that the second expression, [tex]\(7x + 2\)[/tex], is the one that is not equivalent to the other three.