Answer :
Alright, let’s work through each expression step-by-step to simplify them.
### Expression 1:
[tex]\[2x + 2 + 2x + 3x - 8\][/tex]
1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[2x + 2x + 3x = 7x\][/tex]
2. Combine the constant terms:
[tex]\[2 - 8 = -6\][/tex]
So, the simplified form of the first expression is:
[tex]\[7x - 6\][/tex]
### Expression 2:
[tex]\[4 + 7x - 2\][/tex]
1. Combine the constant terms:
[tex]\[4 - 2 = 2\][/tex]
So, the simplified form of the second expression is:
[tex]\[7x + 2\][/tex]
### Expression 3:
[tex]\[-2 + 5x + 2x - 4\][/tex]
1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[5x + 2x = 7x\][/tex]
2. Combine the constant terms:
[tex]\[-2 - 4 = -6\][/tex]
So, the simplified form of the third expression is:
[tex]\[7x - 6\][/tex]
### Expression 4:
[tex]\[8x - x - 6\][/tex]
1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[8x - x = 7x\][/tex]
So, the simplified form of the fourth expression is:
[tex]\[7x - 6\][/tex]
### Conclusion:
The simplified forms of the expressions are:
1. [tex]\(7x - 6\)[/tex]
2. [tex]\(7x + 2\)[/tex]
3. [tex]\(7x - 6\)[/tex]
4. [tex]\(7x - 6\)[/tex]
From these simplified forms, it's clear that the second expression, [tex]\(7x + 2\)[/tex], is the one that is not equivalent to the other three.
### Expression 1:
[tex]\[2x + 2 + 2x + 3x - 8\][/tex]
1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[2x + 2x + 3x = 7x\][/tex]
2. Combine the constant terms:
[tex]\[2 - 8 = -6\][/tex]
So, the simplified form of the first expression is:
[tex]\[7x - 6\][/tex]
### Expression 2:
[tex]\[4 + 7x - 2\][/tex]
1. Combine the constant terms:
[tex]\[4 - 2 = 2\][/tex]
So, the simplified form of the second expression is:
[tex]\[7x + 2\][/tex]
### Expression 3:
[tex]\[-2 + 5x + 2x - 4\][/tex]
1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[5x + 2x = 7x\][/tex]
2. Combine the constant terms:
[tex]\[-2 - 4 = -6\][/tex]
So, the simplified form of the third expression is:
[tex]\[7x - 6\][/tex]
### Expression 4:
[tex]\[8x - x - 6\][/tex]
1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[8x - x = 7x\][/tex]
So, the simplified form of the fourth expression is:
[tex]\[7x - 6\][/tex]
### Conclusion:
The simplified forms of the expressions are:
1. [tex]\(7x - 6\)[/tex]
2. [tex]\(7x + 2\)[/tex]
3. [tex]\(7x - 6\)[/tex]
4. [tex]\(7x - 6\)[/tex]
From these simplified forms, it's clear that the second expression, [tex]\(7x + 2\)[/tex], is the one that is not equivalent to the other three.