The table describes the quadratic function [tex]\( p(x) \)[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]\( x \)[/tex] & [tex]\( p(x) \)[/tex] \\
\hline
-1 & 31 \\
\hline
0 & 17 \\
\hline
1 & 7 \\
\hline
2 & 1 \\
\hline
3 & -1 \\
\hline
4 & 1 \\
\hline
5 & 7 \\
\hline
\end{tabular}

What is the equation of [tex]\( p(x) \)[/tex] in vertex form?

A. [tex]\( p(x) = 2(x-3)^2 - 1 \)[/tex]
B. [tex]\( p(x) = 2(x+3)^2 - 1 \)[/tex]
C. [tex]\( p(x) = 3(x-3)^2 - 1 \)[/tex]



Answer :

To find the equation of the quadratic function [tex]\( p(x) \)[/tex] based on the given table of values, the function should be in the vertex form [tex]\( p(x) = a(x - h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex of the parabola, and [tex]\( a \)[/tex] is a coefficient that determines the width and direction of the parabola.

Given the table:
[tex]\[ \begin{array}{|c|c|} \hline x & p(x) \\ \hline -1 & 31 \\ 0 & 17 \\ 1 & 7 \\ 2 & 1 \\ 3 & -1 \\ 4 & 1 \\ 5 & 7 \\ \hline \end{array} \][/tex]

Let's use the given answer directly to check and identify the correct function form.

### Checking [tex]\( p(x) = 2(x+3)^2 - 1 \)[/tex]:

#### Verifying [tex]\( p(x) \)[/tex] at various values of [tex]\( x \)[/tex]:

1. [tex]\( x = 3 \)[/tex]:
[tex]\[ p(3) = 2(3 + 3)^2 - 1 = 2 (6)^2 - 1 = 2 \cdot 36 - 1 = 72 - 1 = 71 \, , \text{(This doesn't match)}. \][/tex]
This value is wrong. Hence, this form is incorrect.

### Verifying [tex]\( p(x) = 2(x-3)^2 - 1 \)[/tex]:

#### Verifying [tex]\( p(x) \)[/tex] at various values of [tex]\( x \)[/tex]:

1. [tex]\( x = -1 \)[/tex]:
[tex]\[ p(-1) = 2(-1 - 3)^2 - 1 = 2(-4)^2 - 1 = 2 \cdot 16 - 1 = 32 - 1 = 31 \, (\text{Correct!}) \][/tex]

2. [tex]\( x = 0 \)[/tex]:
[tex]\[ p(0) = 2(0 - 3)^2 - 1 = 2(-3)^2 - 1 = 2 \cdot 9 - 1 = 18 - 1 = 17 \, (\text{Correct!}) \][/tex]

3. [tex]\( x = 1 \)[/tex]:
[tex]\[ p(1) = 2(1 - 3)^2 - 1 = 2(-2)^2 - 1 = 2 \cdot 4 - 1 = 8 - 1 = 7 \, (\text{Correct!}) \][/tex]

4. [tex]\( x = 2 \)[/tex]:
[tex]\[ p(2) = 2(2 - 3)^2 - 1 = 2(-1)^2 - 1 = 2 \cdot 1 - 1 = 2 - 1 = 1 \, (\text{Correct!}) \][/tex]

5. [tex]\( x = 3 \)[/tex]:
[tex]\[ p(3) = 2(3 - 3)^2 - 1 = 2(0)^2 - 1 = 0 - 1 = -1 \, (\text{Correct!}) \][/tex]

6. [tex]\( x = 4 \)[/tex]:
[tex]\[ p(4) = 2(4 - 3)^2 - 1 = 2(1)^2 - 1 = 2 \cdot 1 - 1 = 2 - 1 = 1 \, (\text{Correct!}) \][/tex]

7. [tex]\( x = 5 \)[/tex]:
[tex]\[ p(5) = 2(5 - 3)^2 - 1 = 2(2)^2 - 1 = 2 \cdot 4 - 1 = 8 - 1 = 7 \, (\text{Correct!}) \][/tex]

Since all the values match, we confirm that the correct equation of [tex]\( p(x) \)[/tex] is [tex]\( 2(x-3)^2-1 \)[/tex].

### Conclusion:

The equation of [tex]\( p(x) \)[/tex] in vertex form is:
[tex]\[ p(x) = 2(x-3)^2 - 1 \][/tex]