Simplify the expression [tex]\left(\frac{1}{4ab}\right)^{-2}[/tex]. Assume [tex]a \neq 0, b \neq 0[/tex].

A. [tex]-\frac{1}{16a^2b^2}[/tex]

B. [tex]\frac{a^2b^2}{4}[/tex]

C. [tex]-16a^2b^2[/tex]

D. [tex]16a^2b^2[/tex]



Answer :

To simplify the expression [tex]\(\left(\frac{1}{4ab}\right)^{-2}\)[/tex], we can follow the steps below:

1. Understand the given expression:
We start with the expression [tex]\(\left(\frac{1}{4ab}\right)^{-2}\)[/tex].

2. Use the properties of exponents:
When an expression in the form [tex]\(\left(\frac{1}{x}\right)^{-n}\)[/tex] is given, it can be rewritten as [tex]\(x^n\)[/tex]. So, [tex]\(\left(\frac{1}{4ab}\right)^{-2}\)[/tex] can be rewritten as:
[tex]\[ \left(4ab\right)^{2} \][/tex]

3. Simplify the expression further:
Next, we need to expand [tex]\((4ab)^2\)[/tex] using the properties of exponents:
[tex]\[ (4ab)^2 = 4^2 \cdot a^2 \cdot b^2 \][/tex]
Evaluating [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]

4. Combine the terms:
Now we combine all the simplified terms:
[tex]\[ (4ab)^2 = 16a^2b^2 \][/tex]

Thus, the simplified form of the given expression [tex]\(\left(\frac{1}{4ab}\right)^{-2}\)[/tex] is [tex]\(16a^2b^2\)[/tex].

Therefore, the correct answer from the given choices is:
[tex]\[ \boxed{16a^2b^2} \][/tex]