Which expression is equivalent to [tex] \frac{28 p^9 q^{-5}}{12 p^{-6} q^7} [/tex]? Assume [tex] p \neq 0, q \neq 0 [/tex].

A. [tex] \frac{2}{p^{15} q^{12}} [/tex]

B. [tex] \frac{7 p^{15}}{3 q^{12}} [/tex]

C. [tex] \frac{2 q^{12}}{p^{15}} [/tex]

D. [tex] \frac{7 p^{15} q^{12}}{3} [/tex]



Answer :

To find an expression equivalent to [tex]\(\frac{28 p^9 q^{-5}}{12 p^{-6} q^7}\)[/tex], let's break down the problem into simpler steps:

1. Simplify the numerical coefficient:
[tex]\[ \frac{28}{12} \][/tex]
Simplifying [tex]\(\frac{28}{12}\)[/tex] gives [tex]\(\frac{7}{3}\)[/tex].

2. Combine the exponents for [tex]\(p\)[/tex]:
[tex]\[ \frac{p^9}{p^{-6}} \][/tex]
When dividing like bases, you subtract the exponents:
[tex]\[ p^{9 - (-6)} = p^{9 + 6} = p^{15} \][/tex]

3. Combine the exponents for [tex]\(q\)[/tex]:
[tex]\[ \frac{q^{-5}}{q^7} \][/tex]
Similarly, for [tex]\(q\)[/tex],
[tex]\[ q^{-5 - 7} = q^{-12} \][/tex]

Now, putting all these simplified terms together, we get:

[tex]\[ \frac{28 p^9 q^{-5}}{12 p^{-6} q^7} = \frac{7}{3} p^{15} q^{-12} \][/tex]

Thus, the equivalent expression is:
[tex]\[ \frac{7 p^{15} q^{-12}}{3} \][/tex]

Looking at the options given:
1. [tex]\(\frac{2}{p^{15} q^{12}}\)[/tex]
2. [tex]\(\frac{7 p^{15}}{3 q^{12}}\)[/tex]
3. [tex]\(\frac{2 q^{12}}{p^{15}}\)[/tex]
4. [tex]\(\frac{7 p^{15} q^{12}}{3}\)[/tex]

The correct equivalent expression matches option 2:
[tex]\[ \frac{7 p^{15}}{3 q^{12}} \][/tex]

Other Questions