Find the output, [tex]\( h \)[/tex], when the input, [tex]\( x \)[/tex], is [tex]\(-18\)[/tex].

[tex]\[
\begin{array}{l}
h = 17 + \frac{x}{6} \\
h = \square
\end{array}
\][/tex]

Given [tex]\( x = -18 \)[/tex], calculate [tex]\( h \)[/tex].



Answer :

To find the output [tex]\( h \)[/tex] when the input [tex]\( x \)[/tex] is [tex]\(-18\)[/tex], we substitute [tex]\( x = -18 \)[/tex] into the equation [tex]\( h = 17 + \frac{x}{6} \)[/tex].

Here are the steps:

1. Substitute the value of [tex]\( x \)[/tex] into the equation:
[tex]\[ h = 17 + \frac{-18}{6} \][/tex]

2. Simplify the fraction [tex]\( \frac{-18}{6} \)[/tex]:
[tex]\[ \frac{-18}{6} = -3 \][/tex]

3. Substitute [tex]\(-3\)[/tex] back into the equation:
[tex]\[ h = 17 + (-3) \][/tex]

4. Perform the addition:
[tex]\[ 17 + (-3) = 14 \][/tex]

Therefore, the value of [tex]\( h \)[/tex] when [tex]\( x = -18 \)[/tex] is [tex]\( 14 \)[/tex].

[tex]\[ h = 14 \][/tex]