Find the output, [tex]\( k \)[/tex], when the input, [tex]\( t \)[/tex], is [tex]\(-7\)[/tex].

[tex]\[
\begin{array}{l}
k = 10t - 19 \\
k = \square
\end{array}
\][/tex]



Answer :

To find the output, [tex]\( k \)[/tex], when the input, [tex]\( t \)[/tex], is [tex]\(-7\)[/tex], we use the formula given:

[tex]\[ k = 10t - 19 \][/tex]

Now, let's substitute the value of [tex]\( t \)[/tex] into the equation.

Given: [tex]\( t = -7 \)[/tex]

Substitute [tex]\( t \)[/tex] in the formula:

[tex]\[ k = 10(-7) - 19 \][/tex]

So, we multiply [tex]\( 10 \)[/tex] by [tex]\(-7\)[/tex]:

[tex]\[ 10 \times (-7) = -70 \][/tex]

Next, we subtract [tex]\( 19 \)[/tex] from [tex]\(-70\)[/tex]:

[tex]\[ -70 - 19 = -89 \][/tex]

Therefore, the output [tex]\( k \)[/tex] when [tex]\( t \)[/tex] is [tex]\(-7\)[/tex] is:

[tex]\[ k = -89 \][/tex]