A manufacturer fills various size boxes with flour. Today, the boxes are 12 inches tall, 8 inches wide, and 3 inches deep. They adjust the filling machine so it only fills the box until the product is 1.5 inches from the top of the box. How many cubic inches of flour will they save by not filling the box to the top?

A. 24 in[tex]$^3$[/tex]

B. 12 in[tex]$^3$[/tex]

C. 18 in[tex]$^3$[/tex]

D. 15 in[tex]$^3$[/tex]



Answer :

Certainly! Let's go through the steps to determine how many cubic inches of flour will be saved by not filling the box to the top.

### Step 1: Determine Total Volume of the Box

First, let's calculate the total volume if the box were filled completely. Given the dimensions:
- Height = 12 inches
- Width = 8 inches
- Depth = 3 inches

The volume, [tex]\( V \)[/tex], is calculated by multiplying these dimensions together:
[tex]\[ V_{\text{total}} = \text{height} \times \text{width} \times \text{depth} \][/tex]
[tex]\[ V_{\text{total}} = 12 \, \text{inches} \times 8 \, \text{inches} \times 3 \, \text{inches} \][/tex]
[tex]\[ V_{\text{total}} = 288 \, \text{cubic inches} \][/tex]

### Step 2: Determine Fill Height

Next, the manufacturer wants to leave 1.5 inches unfilled at the top of the box. Thus, the filling height, [tex]\( H_{\text{fill}} \)[/tex], would be:
[tex]\[ H_{\text{fill}} = \text{height} - 1.5 \, \text{inches} \][/tex]
[tex]\[ H_{\text{fill}} = 12 \, \text{inches} - 1.5 \, \text{inches} \][/tex]
[tex]\[ H_{\text{fill}} = 10.5 \, \text{inches} \][/tex]

### Step 3: Calculate the Filled Volume

The volume when the box is filled up to 1.5 inches from the top is calculated similarly, using the fill height:
[tex]\[ V_{\text{fill}} = H_{\text{fill}} \times \text{width} \times \text{depth} \][/tex]
[tex]\[ V_{\text{fill}} = 10.5 \, \text{inches} \times 8 \, \text{inches} \times 3 \, \text{inches} \][/tex]
[tex]\[ V_{\text{fill}} = 10.5 \times 8 \times 3 \][/tex]
[tex]\[ V_{\text{fill}} = 252 \, \text{cubic inches} \][/tex]

### Step 4: Calculate the Saved Volume

Finally, to determine how much flour is saved, we subtract the filled volume from the total volume:
[tex]\[ V_{\text{saved}} = V_{\text{total}} - V_{\text{fill}} \][/tex]
[tex]\[ V_{\text{saved}} = 288 \, \text{cubic inches} - 252 \, \text{cubic inches} \][/tex]
[tex]\[ V_{\text{saved}} = 36 \, \text{cubic inches} \][/tex]

### Conclusion:
So the correct answer is not provided in the listed options. We found that the saved volume is 36 cubic inches. There could be a typo or mistake in the options given.