Answer :

Let's examine and simplify the given expression step-by-step:
[tex]\[ 4n - m + 3p + 2m = n = p \][/tex]

### Step 1: Combine Like Terms
First, combine the like terms involving [tex]\( m \)[/tex]:
[tex]\[ 4n - m + 2m + 3p = n = p \][/tex]
This simplifies to:
[tex]\[ 4n + m + 3p = n = p \][/tex]

### Step 2: Substitute [tex]\( p \)[/tex] with [tex]\( n \)[/tex]
It's given that [tex]\( n = p \)[/tex], so substitute [tex]\( p \)[/tex] with [tex]\( n \)[/tex]:
[tex]\[ 4n + m + 3n = n = n \][/tex]

### Step 3: Simplify the Expression
Since [tex]\( n = n \)[/tex] trivially holds, focus on simplifying the other part:
[tex]\[ 4n + m + 3n = n \][/tex]
Combine the [tex]\( n \)[/tex] terms:
[tex]\[ 7n + m = n \][/tex]

### Step 4: Isolate [tex]\( m \)[/tex]
To isolate [tex]\( m \)[/tex], subtract [tex]\( 7n \)[/tex] from both sides of the equation:
[tex]\[ 7n + m - 7n = n - 7n \][/tex]
This simplifies to:
[tex]\[ m = n - 7n \][/tex]
[tex]\[ m = -6n \][/tex]

### Final Result
The simplified expression is:
[tex]\[ m = -6n \][/tex]

Thus, the expression [tex]\( 4n - m + 3p + 2m = n = p \)[/tex] simplifies to:
[tex]\[ m = -6n \][/tex]