Answered

Multiply the following rational expressions.

[tex]\[
\frac{-3 u^2 w}{7 v^3 w^2} \cdot \frac{49 u v^2}{w^3}
\][/tex]

Simplify your answer. Use integers or fractions for any numbers in the expression.

[tex]\[
\frac{-3 u^2 w}{7 v^3 w^2} \cdot \frac{49 u v^2}{w^3} =
\][/tex]



Answer :

To multiply the given rational expressions, let's follow these steps carefully.

### Given Expressions:
[tex]\[ \frac{-3 u^2 w}{7 v^3 w^2} \quad \text{and} \quad \frac{49 u v^2}{w^3} \][/tex]

### Step 1: Multiply the Numerators
First, multiply the numerators of the two fractions:
[tex]\[ -3 u^2 w \times 49 u v^2 \][/tex]

### Step 2: Multiply the Denominators
Next, multiply the denominators of the two fractions:
[tex]\[ 7 v^3 w^2 \times w^3 \][/tex]

### Step 3: Perform the Multiplications

#### Numerator:
[tex]\[ -3 \times 49 = -147 \][/tex]
[tex]\[ u^2 \times u = u^{2+1} = u^3 \][/tex]
[tex]\[ w \times v^2 = v^2 w \][/tex]

So, the combined numerator is:
[tex]\[ -147 u^3 v^2 w \][/tex]

#### Denominator:
[tex]\[ 7 \times 1 = 7 \][/tex]
[tex]\[ v^3 \times v^0 = v^3 \][/tex]
[tex]\[ w^2 \times w^3 = w^{2+3} = w^5 \][/tex]

So, the combined denominator is:
[tex]\[ 7 v^3 w^5 \][/tex]

### Step 4: Combine the Numerators and Denominators

Now, place the combined numerator over the combined denominator:
[tex]\[ \frac{-147 u^3 v^2 w}{7 v^3 w^5} \][/tex]

### Step 5: Simplify the Expression

Combine like terms to simplify the expression:

For the constants:
[tex]\[ \frac{-147}{7} = -21 \][/tex]

For the variable [tex]\( u \)[/tex]:
[tex]\[ u^3 \quad (\text{no change needed}) \][/tex]

For the variable [tex]\( v \)[/tex]:
[tex]\[ v^{2-3} = v^{-1} \][/tex]

For the variable [tex]\( w \)[/tex]:
[tex]\[ w^{1-5} = w^{-4} \][/tex]

Thus, the simplified rational expression is:
[tex]\[ -21 u^3 v^{-1} w^{-4} \][/tex]

### Final Answer

Therefore, the product of the given rational expressions is:
[tex]\[ \boxed{-21 u^3 v^{-1} w^{-4}} \][/tex]