Find the rectangular coordinates of the point [tex]\left(-4, \frac{\pi}{3}\right)[/tex].

A. [tex](-2, -2 \sqrt{3})[/tex]
B. [tex](-2, 2 \sqrt{3})[/tex]
C. [tex](2, -2 \sqrt{3})[/tex]
D. [tex](2, 2 \sqrt{3})[/tex]

Please select the best answer from the choices provided:
A
B
C
D



Answer :

To find the rectangular coordinates (x, y) of a point given in polar form [tex]\((r, \theta)\)[/tex], we use the following equations:

[tex]\[ x = r \cos \theta \][/tex]

[tex]\[ y = r \sin \theta \][/tex]

Given the polar coordinates [tex]\( \left(-4, \frac{\pi}{3}\right) \)[/tex]:

1. Substitute [tex]\( r = -4 \)[/tex] and [tex]\( \theta = \frac{\pi}{3} \)[/tex] into the equations.

2. To find [tex]\( x \)[/tex]:
[tex]\[ x = -4 \cos \left(\frac{\pi}{3}\right) \][/tex]
Using the trigonometric value [tex]\( \cos \left(\frac{\pi}{3}\right) = \frac{1}{2} \)[/tex]:
[tex]\[ x = -4 \left(\frac{1}{2}\right) = -2 \][/tex]

3. To find [tex]\( y \)[/tex]:
[tex]\[ y = -4 \sin \left(\frac{\pi}{3}\right) \][/tex]
Using the trigonometric value [tex]\( \sin \left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \)[/tex]:
[tex]\[ y = -4 \left(\frac{\sqrt{3}}{2}\right) = -2\sqrt{3} \][/tex]

So, the rectangular coordinates are [tex]\((-2, -2\sqrt{3})\)[/tex].

Given the multiple-choice options:
a. [tex]\((-2, -2 \sqrt{3})\)[/tex]
b. [tex]\((-2, 2 \sqrt{3})\)[/tex]
c. [tex]\( (2, -2 \sqrt{3})\)[/tex]
d. [tex]\( (2, 2 \sqrt{3})\)[/tex]

The correct answer is:

A