Solve for [tex]$x$[/tex]:

[tex]3x + 3 - x + (-7) \ \textgreater \ 6[/tex]

A. [tex]$x \ \textgreater \ 2.5$[/tex]
B. [tex][tex]$x \ \textgreater \ -5$[/tex][/tex]
C. [tex]$x \ \textless \ 5$[/tex]
D. [tex]$x \ \textgreater \ 5$[/tex]



Answer :

To solve the inequality [tex]\(3x + 3 - x - 7 > 6\)[/tex] for [tex]\(x\)[/tex], let's break it down step by step.

First, simplify the left-hand side of the inequality:

[tex]\[ 3x + 3 - x - 7 \][/tex]

Combine the [tex]\(x\)[/tex] terms together:

[tex]\[ (3x - x) = 2x \][/tex]

Combine the constant terms together:

[tex]\[ 3 - 7 = -4 \][/tex]

So, the inequality simplifies to:

[tex]\[ 2x - 4 > 6 \][/tex]

Next, isolate the [tex]\(x\)[/tex] term by adding 4 to both sides of the inequality:

[tex]\[ 2x - 4 + 4 > 6 + 4 \][/tex]

This simplifies to:

[tex]\[ 2x > 10 \][/tex]

Now, divide both sides by 2 to solve for [tex]\(x\)[/tex]:

[tex]\[ \frac{2x}{2} > \frac{10}{2} \][/tex]

Which simplifies to:

[tex]\[ x > 5 \][/tex]

Thus, the solution to the inequality [tex]\(3 x + 3 - x + (-7) > 6\)[/tex] is [tex]\(x > 5\)[/tex].

Therefore, the correct answer is:

D. [tex]\(x > 5\)[/tex]