Find an equation equivalent to [tex]$x^2 - y^2 = 4$[/tex] in polar coordinates.

A. [tex]\cos^2 \theta - \sin^2 \theta = 4r[/tex]
B. [tex]\cos^2 \theta - \sin^2 \theta = 4[/tex]
C. [tex]r \cos 2\theta = 4[/tex]
D. [tex]r^2 \cos 2\theta = 4[/tex]

Please select the best answer from the choices provided:

A
B
C
D



Answer :

To convert the given Cartesian equation [tex]\( x^2 - y^2 = 4 \)[/tex] into polar coordinates, follow the steps below:

1. Recall the relationships between Cartesian and Polar coordinates:
- [tex]\( x = r \cos \theta \)[/tex]
- [tex]\( y = r \sin \theta \)[/tex]

2. Substitute these relationships into the given Cartesian equation:
- Substitute [tex]\( x = r \cos \theta \)[/tex] and [tex]\( y = r \sin \theta \)[/tex] into [tex]\( x^2 - y^2 = 4 \)[/tex].

[tex]\[ (r \cos \theta)^2 - (r \sin \theta)^2 = 4 \][/tex]

3. Simplify the left side of the equation:
- Expand the terms:

[tex]\[ r^2 \cos^2 \theta - r^2 \sin^2 \theta = 4 \][/tex]

- Factor out the common term [tex]\( r^2 \)[/tex]:

[tex]\[ r^2 (\cos^2 \theta - \sin^2 \theta) = 4 \][/tex]

4. Use a trigonometric identity:
- Recognize that [tex]\( \cos^2 \theta - \sin^2 \theta \)[/tex] is the trigonometric identity for [tex]\( \cos(2\theta) \)[/tex]:

[tex]\[ r^2 \cos(2\theta) = 4 \][/tex]

Thus, the equivalent polar equation for [tex]\( x^2 - y^2 = 4 \)[/tex] is [tex]\( r^2 \cos(2\theta) = 4 \)[/tex].

The correct answer from the provided choices is:

D