Given the formula [tex]E = IR[/tex], what is the formula for [tex]R[/tex]?

A. [tex]R = IE[/tex]

B. [tex]R = I \div E[/tex]

C. [tex]R = E \div 1[/tex]

D. [tex]R = \frac{E}{I}[/tex]



Answer :

To solve for [tex]\( R \)[/tex] in the given formula [tex]\( E = I R \)[/tex], we need to isolate [tex]\( R \)[/tex] on one side of the equation.

Here is the step-by-step solution:

1. Start with the original equation:
[tex]\[ E = I R \][/tex]

2. To isolate [tex]\( R \)[/tex], we need to divide both sides of the equation by [tex]\( I \)[/tex]:
[tex]\[ \frac{E}{I} = \frac{I R}{I} \][/tex]

3. On the right-hand side, the [tex]\( I \)[/tex] terms cancel out, leaving us with:
[tex]\[ \frac{E}{I} = R \][/tex]

Therefore, the formula for [tex]\( R \)[/tex] is:
[tex]\[ R = \frac{E}{I} \][/tex]

Thus, the correct answer is:
C. [tex]\( R = \frac{E}{I} \)[/tex]