Answer :
Let's evaluate each expression step-by-step to determine which one equals 46.
### Option (A): [tex]\(5(9-3) + (6 \cdot 2)\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 9 - 3 = 6 \][/tex]
2. Substitute back into the expression:
[tex]\[ 5 \cdot 6 + (6 \cdot 2) \][/tex]
3. Perform the multiplications:
[tex]\[ 5 \cdot 6 = 30 \][/tex]
[tex]\[ 6 \cdot 2 = 12 \][/tex]
4. Add the results:
[tex]\[ 30 + 12 = 42 \][/tex]
Thus, option (A) evaluates to 42.
### Option (B): [tex]\(3(4+8) + (2 \cdot 5)\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 4 + 8 = 12 \][/tex]
2. Substitute back into the expression:
[tex]\[ 3 \cdot 12 + (2 \cdot 5) \][/tex]
3. Perform the multiplications:
[tex]\[ 3 \cdot 12 = 36 \][/tex]
[tex]\[ 2 \cdot 5 = 10 \][/tex]
4. Add the results:
[tex]\[ 36 + 10 = 46 \][/tex]
Thus, option (B) evaluates to 46.
### Option (C): [tex]\(7(3 + 3) + 7\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 3 + 3 = 6 \][/tex]
2. Substitute back into the expression:
[tex]\[ 7 \cdot 6 + 7 \][/tex]
3. Perform the multiplication:
[tex]\[ 7 \cdot 6 = 42 \][/tex]
4. Add the results:
[tex]\[ 42 + 7 = 49 \][/tex]
Thus, option (C) evaluates to 49.
### Option (D): [tex]\(2(10 + 5) + 6\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 10 + 5 = 15 \][/tex]
2. Substitute back into the expression:
[tex]\[ 2 \cdot 15 + 6 \][/tex]
3. Perform the multiplication:
[tex]\[ 2 \cdot 15 = 30 \][/tex]
4. Add the results:
[tex]\[ 30 + 6 = 36 \][/tex]
Thus, option (D) evaluates to 36.
### Final Answer
The expression that equals 46 is:
[tex]\[ \boxed{B} \][/tex]
### Option (A): [tex]\(5(9-3) + (6 \cdot 2)\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 9 - 3 = 6 \][/tex]
2. Substitute back into the expression:
[tex]\[ 5 \cdot 6 + (6 \cdot 2) \][/tex]
3. Perform the multiplications:
[tex]\[ 5 \cdot 6 = 30 \][/tex]
[tex]\[ 6 \cdot 2 = 12 \][/tex]
4. Add the results:
[tex]\[ 30 + 12 = 42 \][/tex]
Thus, option (A) evaluates to 42.
### Option (B): [tex]\(3(4+8) + (2 \cdot 5)\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 4 + 8 = 12 \][/tex]
2. Substitute back into the expression:
[tex]\[ 3 \cdot 12 + (2 \cdot 5) \][/tex]
3. Perform the multiplications:
[tex]\[ 3 \cdot 12 = 36 \][/tex]
[tex]\[ 2 \cdot 5 = 10 \][/tex]
4. Add the results:
[tex]\[ 36 + 10 = 46 \][/tex]
Thus, option (B) evaluates to 46.
### Option (C): [tex]\(7(3 + 3) + 7\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 3 + 3 = 6 \][/tex]
2. Substitute back into the expression:
[tex]\[ 7 \cdot 6 + 7 \][/tex]
3. Perform the multiplication:
[tex]\[ 7 \cdot 6 = 42 \][/tex]
4. Add the results:
[tex]\[ 42 + 7 = 49 \][/tex]
Thus, option (C) evaluates to 49.
### Option (D): [tex]\(2(10 + 5) + 6\)[/tex]
1. Evaluate inside the parentheses first:
[tex]\[ 10 + 5 = 15 \][/tex]
2. Substitute back into the expression:
[tex]\[ 2 \cdot 15 + 6 \][/tex]
3. Perform the multiplication:
[tex]\[ 2 \cdot 15 = 30 \][/tex]
4. Add the results:
[tex]\[ 30 + 6 = 36 \][/tex]
Thus, option (D) evaluates to 36.
### Final Answer
The expression that equals 46 is:
[tex]\[ \boxed{B} \][/tex]