Complete the table below for the first 10 terms of the sequence whose terms are given by [tex]a_1 = 11[/tex] and [tex]a_{n+1} = \sqrt{10 + \sqrt{a_n}}[/tex].

(Round to four decimal places as needed.)

\begin{tabular}{|c|c|}
\hline
[tex]$n$[/tex] & [tex]$a_n$[/tex] \\
\hline
1 & 11 \\
2 & [tex]$\square$[/tex] \\
3 & [tex]$\square$[/tex] \\
4 & [tex]$\square$[/tex] \\
5 & [tex]$\square$[/tex] \\
6 & [tex]$\square$[/tex] \\
7 & [tex]$\square$[/tex] \\
8 & [tex]$\square$[/tex] \\
9 & [tex]$\square$[/tex] \\
10 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

To solve this problem, we need to complete the table by finding the first 10 terms of the sequence where [tex]\(a_1 = 11\)[/tex] and [tex]\(a_{n+1} = \sqrt{10 + \sqrt{a_n}}\)[/tex]. We will round each value to four decimal places.

Here is the step-by-step solution for each term:

1. [tex]\(a_1\)[/tex]: Given directly as 11.

2. [tex]\(a_2\)[/tex]: Use the formula [tex]\(a_{n+1} = \sqrt{10 + \sqrt{a_n}}\)[/tex] with [tex]\(a_n = 11\)[/tex].
[tex]\[ a_2 = \sqrt{10 + \sqrt{11}} \approx 3.6492 \][/tex]

3. [tex]\(a_3\)[/tex]: Use the formula with [tex]\(a_n = 3.6492\)[/tex].
[tex]\[ a_3 = \sqrt{10 + \sqrt{3.6492}} \approx 3.4511 \][/tex]

4. [tex]\(a_4\)[/tex]: Use the formula with [tex]\(a_n = 3.4511\)[/tex].
[tex]\[ a_4 = \sqrt{10 + \sqrt{3.4511}} \approx 3.4435 \][/tex]

5. [tex]\(a_5\)[/tex]: Use the formula with [tex]\(a_n = 3.4435\)[/tex].
[tex]\[ a_5 = \sqrt{10 + \sqrt{3.4435}} \approx 3.4432 \][/tex]

6. [tex]\(a_6\)[/tex]: Use the formula with [tex]\(a_n = 3.4432\)[/tex].
[tex]\[ a_6 = \sqrt{10 + \sqrt{3.4432}} \approx 3.4432 \][/tex]

7. [tex]\(a_7\)[/tex]: Use the formula with [tex]\(a_n = 3.4432\)[/tex].
[tex]\[ a_7 = \sqrt{10 + \sqrt{3.4432}} \approx 3.4432 \][/tex]

8. [tex]\(a_8\)[/tex]: Use the formula with [tex]\(a_n = 3.4432\)[/tex].
[tex]\[ a_8 = \sqrt{10 + \sqrt{3.4432}} \approx 3.4432 \][/tex]

9. [tex]\(a_9\)[/tex]: Use the formula with [tex]\(a_n = 3.4432\)[/tex].
[tex]\[ a_9 = \sqrt{10 + \sqrt{3.4432}} \approx 3.4432 \][/tex]

10. [tex]\(a_{10}\)[/tex]: Use the formula with [tex]\(a_n = 3.4432\)[/tex].
[tex]\[ a_{10} = \sqrt{10 + \sqrt{3.4432}} \approx 3.4432 \][/tex]

Now we can complete the table:
[tex]\[ \begin{tabular}{|c|c|} \hline \(n\) & \(u(n) = a_n\) \\ \hline 1 & 11 \\ 2 & 3.6492 \\ 3 & 3.4511 \\ 4 & 3.4435 \\ 5 & 3.4432 \\ 6 & 3.4432 \\ 7 & 3.4432 \\ 8 & 3.4432 \\ 9 & 3.4432 \\ 10 & 3.4432 \\ \hline \end{tabular} \][/tex]