A generic salt, [tex]$AB_3$[/tex], has a molar mass of [tex]$289 \, \text{g/mol}$[/tex] and a solubility of [tex][tex]$3.20 \, \text{g/L}$[/tex][/tex] at [tex]$25^{\circ} \text{C}$[/tex].

What is the [tex]$K_{\text{sp}}$[/tex] of this salt at [tex]$25^{\circ} \text{C}$[/tex]?

[tex]\[
\begin{array}{l}
AB_3(s) \rightleftharpoons A^{3+}(aq) + 3B^{-}(aq) \\
K_{\text{sp}} = \square
\end{array}
\][/tex]

[tex]\[
\square
\][/tex]

TOOLS

[tex]\[
\times 10^y
\][/tex]



Answer :

To find the solubility product constant ([tex]\(K_{sp}\)[/tex]) of the salt [tex]\(AB_3\)[/tex], we need to follow these steps:

1. Determine the molar solubility of [tex]\(AB_3\)[/tex]:
- The molar mass of [tex]\(AB_3\)[/tex] is given as 289 g/mol.
- The solubility of [tex]\(AB_3\)[/tex] is given as 3.20 g/L.

We can convert the solubility from grams per liter to moles per liter (molar solubility) by using the molar mass:

[tex]\[ \text{Molar Solubility} = \frac{\text{Solubility (g/L)}}{\text{Molar Mass (g/mol)}} = \frac{3.20\ \text{g/L}}{289\ \text{g/mol}} \approx 0.0110727\ \text{mol/L} \][/tex]

2. Write the dissociation equation and express solubility in terms of its ions:

The dissociation of [tex]\(AB_3\)[/tex] can be represented as:

[tex]\[ AB_3(s) \rightleftharpoons A^{3+}(aq) + 3B^-(aq) \][/tex]

From the stoichiometry of the dissociation:
- The concentration of [tex]\(A^{3+}\)[/tex] ions will be equal to the molar solubility of [tex]\(AB_3\)[/tex], which is [tex]\(0.0110727\ \text{mol/L}\)[/tex].
- The concentration of [tex]\(B^-\)[/tex] ions will be three times the molar solubility, which is [tex]\(3 \times 0.0110727\ \text{mol/L} \approx 0.033218\ \text{mol/L}\)[/tex].

3. Calculate the solubility product constant [tex]\(K_{sp}\)[/tex]:

The solubility product constant [tex]\(K_{sp}\)[/tex] is given by the product of the equilibrium concentrations of the ions, each raised to the power of their stoichiometric coefficients:

[tex]\[ K_{sp} = [A^{3+}] \times [B^-]^3 \][/tex]

Substituting the ion concentrations:

[tex]\[ K_{sp} = (0.0110727) \times (0.033218)^3 \][/tex]

Evaluating this expression:

[tex]\[ K_{sp} \approx 4.0586 \times 10^{-7} \][/tex]

Therefore, the solubility product constant [tex]\(K_{sp}\)[/tex] of [tex]\(AB_3\)[/tex] at [tex]\(25^{\circ}C\)[/tex] is:

[tex]\[ K_{sp} \approx 4.06 \times 10^{-7} \][/tex]