A tree trunk has a height of 30 feet and a radius of 2.5 feet.

Which of these best represents the volume of the tree trunk?

A. [tex]236 \, \text{ft}^3[/tex]
B. [tex]589 \, \text{ft}^3[/tex]
C. [tex]471 \, \text{ft}^3[/tex]
D. [tex]2,355 \, \text{ft}^3[/tex]



Answer :

To determine the volume of the tree trunk, we consider the trunk as a cylinder. The formula for the volume [tex]\( V \)[/tex] of a cylinder is given by:

[tex]\[ V = \pi r^2 h \][/tex]

where:
- [tex]\( r \)[/tex] is the radius of the cylinder,
- [tex]\( h \)[/tex] is the height of the cylinder,
- [tex]\( \pi \)[/tex] is a constant approximately equal to 3.14159.

Given the height of the tree trunk [tex]\( h = 30 \)[/tex] feet and the radius [tex]\( r = 2.5 \)[/tex] feet, we can plug these values into the formula:

[tex]\[ V = \pi (2.5)^2 (30) \][/tex]

First, calculate [tex]\( r^2 \)[/tex]:

[tex]\[ r^2 = (2.5)^2 = 6.25 \][/tex]

Next, multiply [tex]\( r^2 \)[/tex] by the height [tex]\( h \)[/tex]:

[tex]\[ 6.25 \times 30 = 187.5 \][/tex]

Finally, multiply this result by [tex]\( \pi \)[/tex]:

[tex]\[ V = \pi \times 187.5 \approx 3.14159 \times 187.5 \approx 589.0486225480862 \][/tex]

Therefore, the volume of the tree trunk is approximately [tex]\( 589 \)[/tex] cubic feet.

Comparing this result to the choices given:
[tex]\[ 236 \text{ ft}^3 \][/tex]
[tex]\[ 589 \text{ ft}^3 \][/tex]
[tex]\[ 471 \text{ ft}^3 \][/tex]
[tex]\[ 2,355 \text{ ft}^3 \][/tex]

The value that best represents the volume of the tree trunk is:

[tex]\[ 589 \text{ ft}^3 \][/tex]

So the correct answer is:

[tex]\[ 589 \text{ ft}^3 \][/tex]