A pile of tailings from a gold dredge is in the shape of a cone. The diameter of the base is 34 feet and the height is 16 feet. Approximately, how many cubic feet of gravel is in the pile? Use [tex]\pi=3.14[/tex].

A. [tex]14,527 \, \text{ft}^3[/tex]
B. [tex]6,032 \, \text{ft}^3[/tex]
C. [tex]285 \, \text{ft}^3[/tex]
D. [tex]4,840 \, \text{ft}^3[/tex]



Answer :

To find the volume of a cone, we use the formula:

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Given:
- The diameter of the base of the cone is 34 feet.
- The height of the cone is 16 feet.
- [tex]\(\pi\)[/tex] is approximated as 3.14.

First, we'll need to determine the radius of the base of the cone. Recall that the radius [tex]\( r \)[/tex] is half the diameter:

[tex]\[ r = \frac{\text{diameter}}{2} = \frac{34}{2} = 17 \text{ feet} \][/tex]

Now we can plug the radius, height, and [tex]\(\pi\)[/tex] into the volume formula for a cone:

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Substitute the known values:

[tex]\[ V = \frac{1}{3} \cdot 3.14 \cdot (17)^2 \cdot 16 \][/tex]

Next, calculate [tex]\( (17)^2 \)[/tex]:

[tex]\[ 17^2 = 289 \][/tex]

Then, multiply 289 by 16:

[tex]\[ 289 \cdot 16 = 4624 \][/tex]

Now, multiply this product by [tex]\(\pi\)[/tex]:

[tex]\[ 3.14 \cdot 4624 = 14504.36 \][/tex]

Finally, multiply by [tex]\(\frac{1}{3}\)[/tex]:

[tex]\[ V = \frac{1}{3} \cdot 14504.36 \approx 4834.79 \][/tex]

After all calculations, the volume is approximately 4839.786666666667 cubic feet. Hence, the correct answer from the provided options is:

[tex]\[ \boxed{4840 \text{ ft}^3} \][/tex]